Behind The Scenes of Illini Esports Growth and Engagement Analysis
This post is my documentation on the code I wrote to generate the graphs and figures from my Illini Esports Growth and Engagement Analysis Post. I have also posted the report to my github repository Feel free to read the original document as it contains the full written analysis and insights from my team. I gained a lot of experience working with date time objects and ggplot2 in this project.
• 96 min read
Table of Contents
- 1 Behind The Scenes of Illini Esports Growth and Engagement Analysis
- 2 EDA
- 3 ETL on Growth and Activation
- 4 Data Needed For Investigation
- 5 Data Aggregation
- 6 Visualizations
- 7 Multiple Models Excluding Effect of Year
- 8 Testing Year Effect
working = "../../../../School/Graduate 2020-2021/03 - Spring 2021/BADM 577/Illini-Esports-Analysis/"
join = read.csv(paste(working,"guild-activation.csv", sep=""))
join
leave = read.csv(paste(working,"guild-leavers.csv",sep=""))
leave
source = read.csv(paste(working,"guild-joins-by-source.csv",sep=""))
source
interval_start_timestamp | new_members | pct_communicated | pct_opened_channels |
---|---|---|---|
<fct> | <int> | <dbl> | <dbl> |
2019-03-29T00:00:00+00:00 | 2 | 50.00000 | 50.00000 |
2019-03-30T00:00:00+00:00 | 6 | 16.66667 | 33.33333 |
2019-03-31T00:00:00+00:00 | 8 | 25.00000 | 37.50000 |
2019-04-01T00:00:00+00:00 | 9 | 44.44444 | 33.33333 |
2019-04-02T00:00:00+00:00 | 2 | 50.00000 | 100.00000 |
2019-04-03T00:00:00+00:00 | 0 | NA | NA |
2019-04-04T00:00:00+00:00 | 2 | 100.00000 | 100.00000 |
2019-04-05T00:00:00+00:00 | 3 | 33.33333 | 0.00000 |
2019-04-06T00:00:00+00:00 | 2 | 0.00000 | 0.00000 |
2019-04-07T00:00:00+00:00 | 2 | 0.00000 | 0.00000 |
2019-04-08T00:00:00+00:00 | 9 | 33.33333 | 33.33333 |
2019-04-09T00:00:00+00:00 | 3 | 33.33333 | 33.33333 |
2019-04-10T00:00:00+00:00 | 1 | 100.00000 | 100.00000 |
2019-04-11T00:00:00+00:00 | 1 | 0.00000 | 100.00000 |
2019-04-12T00:00:00+00:00 | 1 | 0.00000 | 100.00000 |
2019-04-13T00:00:00+00:00 | 1 | 0.00000 | 100.00000 |
2019-04-14T00:00:00+00:00 | 0 | NA | NA |
2019-04-15T00:00:00+00:00 | 0 | NA | NA |
2019-04-16T00:00:00+00:00 | 3 | 66.66667 | 0.00000 |
2019-04-17T00:00:00+00:00 | 5 | 0.00000 | 20.00000 |
2019-04-18T00:00:00+00:00 | 3 | 100.00000 | 33.33333 |
2019-04-19T00:00:00+00:00 | 3 | 0.00000 | 33.33333 |
2019-04-20T00:00:00+00:00 | 0 | NA | NA |
2019-04-21T00:00:00+00:00 | 1 | 100.00000 | 100.00000 |
2019-04-22T00:00:00+00:00 | 0 | NA | NA |
2019-04-23T00:00:00+00:00 | 1 | 0.00000 | 0.00000 |
2019-04-24T00:00:00+00:00 | 3 | 33.33333 | 0.00000 |
2019-04-25T00:00:00+00:00 | 3 | 66.66667 | 66.66667 |
2019-04-26T00:00:00+00:00 | 3 | 33.33333 | 33.33333 |
2019-04-27T00:00:00+00:00 | 1 | 100.00000 | 0.00000 |
⋮ | ⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00+00:00 | 1 | 0.00000 | 100.00000 |
2021-02-26T00:00:00+00:00 | 5 | 40.00000 | 100.00000 |
2021-02-27T00:00:00+00:00 | 8 | 12.50000 | 100.00000 |
2021-02-28T00:00:00+00:00 | 5 | 20.00000 | 100.00000 |
2021-03-01T00:00:00+00:00 | 2 | 0.00000 | 50.00000 |
2021-03-02T00:00:00+00:00 | 6 | 16.66667 | 16.66667 |
2021-03-03T00:00:00+00:00 | 5 | 0.00000 | 40.00000 |
2021-03-04T00:00:00+00:00 | 8 | 0.00000 | 62.50000 |
2021-03-05T00:00:00+00:00 | 3 | 33.33333 | 33.33333 |
2021-03-06T00:00:00+00:00 | 3 | 0.00000 | 66.66667 |
2021-03-07T00:00:00+00:00 | 3 | 0.00000 | 33.33333 |
2021-03-08T00:00:00+00:00 | 7 | 14.28571 | 42.85714 |
2021-03-09T00:00:00+00:00 | 7 | 0.00000 | 57.14286 |
2021-03-10T00:00:00+00:00 | 5 | 0.00000 | 40.00000 |
2021-03-11T00:00:00+00:00 | 1 | 0.00000 | 100.00000 |
2021-03-12T00:00:00+00:00 | 11 | 18.18182 | 45.45455 |
2021-03-13T00:00:00+00:00 | 4 | 0.00000 | 50.00000 |
2021-03-14T00:00:00+00:00 | 1 | 0.00000 | 0.00000 |
2021-03-15T00:00:00+00:00 | 1 | 0.00000 | 0.00000 |
2021-03-16T00:00:00+00:00 | 6 | 0.00000 | 83.33333 |
2021-03-17T00:00:00+00:00 | 7 | 0.00000 | 71.42857 |
2021-03-18T00:00:00+00:00 | 1 | 0.00000 | 0.00000 |
2021-03-19T00:00:00+00:00 | 5 | 0.00000 | 80.00000 |
2021-03-20T00:00:00+00:00 | 2 | 0.00000 | 0.00000 |
2021-03-21T00:00:00+00:00 | 6 | 33.33333 | 33.33333 |
2021-03-22T00:00:00+00:00 | 5 | 20.00000 | 60.00000 |
2021-03-23T00:00:00+00:00 | 1 | 0.00000 | 0.00000 |
2021-03-24T00:00:00+00:00 | 4 | 0.00000 | 50.00000 |
2021-03-25T00:00:00+00:00 | 1 | 0.00000 | 0.00000 |
2021-03-26T00:00:00+00:00 | 4 | NA | NA |
interval_start_timestamp | days_in_guild | leavers |
---|---|---|
<fct> | <fct> | <int> |
2019-03-29T00:00:00+00:00 | 'Members for 1 month+' | 1 |
2019-03-30T00:00:00+00:00 | 'Members for 1 month+' | 1 |
2019-03-30T00:00:00+00:00 | 'Members for < 1 month' | 1 |
2019-03-31T00:00:00+00:00 | 'Members for 1 month+' | 2 |
2019-03-31T00:00:00+00:00 | 'Members for < 1 month' | 1 |
2019-04-01T00:00:00+00:00 | 'Members for 1 month+' | 4 |
2019-04-02T00:00:00+00:00 | 'Members for 1 month+' | 1 |
2019-04-03T00:00:00+00:00 | 'Members for 1 month+' | 2 |
2019-04-03T00:00:00+00:00 | 'Members for < 1 month' | 2 |
2019-04-04T00:00:00+00:00 | 'Members for 1 month+' | 2 |
2019-04-04T00:00:00+00:00 | 'Members for < 1 month' | 2 |
2019-04-05T00:00:00+00:00 | 'Members for 1 month+' | 3 |
2019-04-06T00:00:00+00:00 | 'Members for 1 month+' | 1 |
2019-04-06T00:00:00+00:00 | 'Members for < 1 month' | 1 |
2019-04-07T00:00:00+00:00 | 'Members for 1 month+' | 1 |
2019-04-07T00:00:00+00:00 | 'Members for < 1 month' | 2 |
2019-04-08T00:00:00+00:00 | 'Members for 1 month+' | 1 |
2019-04-08T00:00:00+00:00 | 'Members for < 1 month' | 1 |
2019-04-09T00:00:00+00:00 | 'Members for 1 month+' | 1 |
2019-04-09T00:00:00+00:00 | 'Members for < 1 month' | 1 |
2019-04-10T00:00:00+00:00 | 'Members for 1 month+' | 2 |
2019-04-10T00:00:00+00:00 | 'Members for < 1 month' | 1 |
2019-04-11T00:00:00+00:00 | 'Members for 1 month+' | 0 |
2019-04-12T00:00:00+00:00 | 'Members for 1 month+' | 1 |
2019-04-13T00:00:00+00:00 | 'Members for < 1 month' | 1 |
2019-04-14T00:00:00+00:00 | 'Members for 1 month+' | 2 |
2019-04-15T00:00:00+00:00 | 'Members for 1 month+' | 1 |
2019-04-15T00:00:00+00:00 | 'Members for < 1 month' | 1 |
2019-04-16T00:00:00+00:00 | 'Members for 1 month+' | 3 |
2019-04-16T00:00:00+00:00 | 'Members for < 1 month' | 1 |
⋮ | ⋮ | ⋮ |
2021-03-09T00:00:00+00:00 | 'Members for 1 month+' | 2 |
2021-03-09T00:00:00+00:00 | 'Members for < 1 month' | 1 |
2021-03-10T00:00:00+00:00 | 'Members for 1 month+' | 2 |
2021-03-10T00:00:00+00:00 | 'Members for < 1 month' | 3 |
2021-03-11T00:00:00+00:00 | 'Members for 1 month+' | 2 |
2021-03-12T00:00:00+00:00 | 'Members for 1 month+' | 1 |
2021-03-12T00:00:00+00:00 | 'Members for < 1 month' | 5 |
2021-03-13T00:00:00+00:00 | 'Members for < 1 month' | 1 |
2021-03-14T00:00:00+00:00 | 'Members for 1 month+' | 1 |
2021-03-14T00:00:00+00:00 | 'Members for < 1 month' | 1 |
2021-03-15T00:00:00+00:00 | 'Members for 1 month+' | 2 |
2021-03-16T00:00:00+00:00 | 'Members for 1 month+' | 1 |
2021-03-16T00:00:00+00:00 | 'Members for < 1 month' | 3 |
2021-03-17T00:00:00+00:00 | 'Members for 1 month+' | 4 |
2021-03-17T00:00:00+00:00 | 'Members for < 1 month' | 2 |
2021-03-18T00:00:00+00:00 | 'Members for < 1 month' | 1 |
2021-03-19T00:00:00+00:00 | 'Members for 1 month+' | 2 |
2021-03-19T00:00:00+00:00 | 'Members for < 1 month' | 2 |
2021-03-20T00:00:00+00:00 | 'Members for 1 month+' | 5 |
2021-03-20T00:00:00+00:00 | 'Members for < 1 month' | 1 |
2021-03-21T00:00:00+00:00 | 'Members for 1 month+' | 1 |
2021-03-21T00:00:00+00:00 | 'Members for < 1 month' | 3 |
2021-03-22T00:00:00+00:00 | 'Members for 1 month+' | 1 |
2021-03-23T00:00:00+00:00 | 'Members for 1 month+' | 3 |
2021-03-23T00:00:00+00:00 | 'Members for < 1 month' | 1 |
2021-03-24T00:00:00+00:00 | 'Members for 1 month+' | 0 |
2021-03-25T00:00:00+00:00 | 'Members for 1 month+' | 2 |
2021-03-25T00:00:00+00:00 | 'Members for < 1 month' | 1 |
2021-03-26T00:00:00+00:00 | 'Members for 1 month+' | 3 |
2021-03-26T00:00:00+00:00 | 'Members for < 1 month' | 1 |
interval_start_timestamp | discovery_joins | invites | vanity_joins |
---|---|---|---|
<fct> | <int> | <int> | <int> |
2019-03-29T00:00:00+00:00 | 0 | 0 | 3 |
2019-03-30T00:00:00+00:00 | 0 | 0 | 7 |
2019-03-31T00:00:00+00:00 | 0 | 0 | 8 |
2019-04-01T00:00:00+00:00 | 0 | 0 | 11 |
2019-04-02T00:00:00+00:00 | 0 | 0 | 2 |
2019-04-03T00:00:00+00:00 | 0 | 0 | 1 |
2019-04-04T00:00:00+00:00 | 0 | 0 | 3 |
2019-04-05T00:00:00+00:00 | 0 | 0 | 4 |
2019-04-06T00:00:00+00:00 | 0 | 0 | 3 |
2019-04-07T00:00:00+00:00 | 0 | 0 | 2 |
2019-04-08T00:00:00+00:00 | 0 | 0 | 9 |
2019-04-09T00:00:00+00:00 | 0 | 0 | 3 |
2019-04-10T00:00:00+00:00 | 0 | 0 | 1 |
2019-04-11T00:00:00+00:00 | 0 | 0 | 2 |
2019-04-12T00:00:00+00:00 | 0 | 0 | 1 |
2019-04-13T00:00:00+00:00 | 0 | 0 | 1 |
2019-04-14T00:00:00+00:00 | 0 | 0 | 0 |
2019-04-15T00:00:00+00:00 | 0 | 0 | 0 |
2019-04-16T00:00:00+00:00 | 0 | 0 | 7 |
2019-04-17T00:00:00+00:00 | 0 | 0 | 5 |
2019-04-18T00:00:00+00:00 | 0 | 0 | 6 |
2019-04-19T00:00:00+00:00 | 0 | 0 | 3 |
2019-04-20T00:00:00+00:00 | 0 | 0 | 2 |
2019-04-21T00:00:00+00:00 | 0 | 0 | 1 |
2019-04-22T00:00:00+00:00 | 0 | 0 | 1 |
2019-04-23T00:00:00+00:00 | 0 | 0 | 3 |
2019-04-24T00:00:00+00:00 | 0 | 0 | 3 |
2019-04-25T00:00:00+00:00 | 0 | 0 | 3 |
2019-04-26T00:00:00+00:00 | 0 | 0 | 4 |
2019-04-27T00:00:00+00:00 | 0 | 0 | 3 |
⋮ | ⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00+00:00 | 0 | 0 | 1 |
2021-02-26T00:00:00+00:00 | 0 | 0 | 6 |
2021-02-27T00:00:00+00:00 | 0 | 0 | 9 |
2021-02-28T00:00:00+00:00 | 0 | 0 | 5 |
2021-03-01T00:00:00+00:00 | 0 | 0 | 3 |
2021-03-02T00:00:00+00:00 | 0 | 0 | 6 |
2021-03-03T00:00:00+00:00 | 0 | 0 | 5 |
2021-03-04T00:00:00+00:00 | 0 | 0 | 8 |
2021-03-05T00:00:00+00:00 | 0 | 0 | 4 |
2021-03-06T00:00:00+00:00 | 0 | 0 | 3 |
2021-03-07T00:00:00+00:00 | 0 | 0 | 4 |
2021-03-08T00:00:00+00:00 | 0 | 0 | 7 |
2021-03-09T00:00:00+00:00 | 1 | 0 | 6 |
2021-03-10T00:00:00+00:00 | 0 | 0 | 5 |
2021-03-11T00:00:00+00:00 | 0 | 0 | 2 |
2021-03-12T00:00:00+00:00 | 0 | 0 | 11 |
2021-03-13T00:00:00+00:00 | 1 | 0 | 3 |
2021-03-14T00:00:00+00:00 | 0 | 0 | 1 |
2021-03-15T00:00:00+00:00 | 0 | 0 | 2 |
2021-03-16T00:00:00+00:00 | 1 | 0 | 6 |
2021-03-17T00:00:00+00:00 | 1 | 0 | 9 |
2021-03-18T00:00:00+00:00 | 0 | 0 | 1 |
2021-03-19T00:00:00+00:00 | 1 | 0 | 4 |
2021-03-20T00:00:00+00:00 | 0 | 0 | 2 |
2021-03-21T00:00:00+00:00 | 0 | 0 | 7 |
2021-03-22T00:00:00+00:00 | 0 | 0 | 6 |
2021-03-23T00:00:00+00:00 | 0 | 0 | 1 |
2021-03-24T00:00:00+00:00 | 0 | 0 | 5 |
2021-03-25T00:00:00+00:00 | 0 | 0 | 2 |
2021-03-26T00:00:00+00:00 | 0 | 0 | 4 |
message = read.csv(paste(working,"guild-message-activity.csv",sep=""))
message
voice = read.csv(paste(working,"guild-voice-activity.csv",sep=""))
voice
communicator = read.csv(paste(working,"guild-communicators.csv",sep=""))
communicator
interval_start_timestamp | messages | messages_per_communicator |
---|---|---|
<fct> | <int> | <dbl> |
2019-03-29T00:00:00+00:00 | 334 | 6.301887 |
2019-03-30T00:00:00+00:00 | 236 | 6.210526 |
2019-03-31T00:00:00+00:00 | 364 | 8.088889 |
2019-04-01T00:00:00+00:00 | 404 | 5.386667 |
2019-04-02T00:00:00+00:00 | 543 | 11.312500 |
2019-04-03T00:00:00+00:00 | 324 | 7.200000 |
2019-04-04T00:00:00+00:00 | 556 | 10.901961 |
2019-04-05T00:00:00+00:00 | 273 | 5.808511 |
2019-04-06T00:00:00+00:00 | 335 | 7.613636 |
2019-04-07T00:00:00+00:00 | 1102 | 22.040000 |
2019-04-08T00:00:00+00:00 | 188 | 4.476190 |
2019-04-09T00:00:00+00:00 | 399 | 8.673913 |
2019-04-10T00:00:00+00:00 | 531 | 10.620000 |
2019-04-11T00:00:00+00:00 | 689 | 13.000000 |
2019-04-12T00:00:00+00:00 | 418 | 9.086957 |
2019-04-13T00:00:00+00:00 | 566 | 13.162791 |
2019-04-14T00:00:00+00:00 | 481 | 12.025000 |
2019-04-15T00:00:00+00:00 | 659 | 13.180000 |
2019-04-16T00:00:00+00:00 | 779 | 12.770492 |
2019-04-17T00:00:00+00:00 | 596 | 11.245283 |
2019-04-18T00:00:00+00:00 | 1143 | 15.657534 |
2019-04-19T00:00:00+00:00 | 898 | 16.327273 |
2019-04-20T00:00:00+00:00 | 331 | 6.490196 |
2019-04-21T00:00:00+00:00 | 473 | 11.000000 |
2019-04-22T00:00:00+00:00 | 283 | 7.256410 |
2019-04-23T00:00:00+00:00 | 1270 | 21.896552 |
2019-04-24T00:00:00+00:00 | 746 | 14.346154 |
2019-04-25T00:00:00+00:00 | 287 | 5.519231 |
2019-04-26T00:00:00+00:00 | 728 | 11.555556 |
2019-04-27T00:00:00+00:00 | 691 | 12.339286 |
⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00+00:00 | 138 | 3.450000 |
2021-02-26T00:00:00+00:00 | 78 | 2.437500 |
2021-02-27T00:00:00+00:00 | 93 | 2.162791 |
2021-02-28T00:00:00+00:00 | 46 | 1.533333 |
2021-03-01T00:00:00+00:00 | 53 | 1.766667 |
2021-03-02T00:00:00+00:00 | 72 | 2.400000 |
2021-03-03T00:00:00+00:00 | 122 | 4.066667 |
2021-03-04T00:00:00+00:00 | 168 | 4.941176 |
2021-03-05T00:00:00+00:00 | 74 | 2.387097 |
2021-03-06T00:00:00+00:00 | 43 | 1.482759 |
2021-03-07T00:00:00+00:00 | 43 | 1.720000 |
2021-03-08T00:00:00+00:00 | 106 | 3.312500 |
2021-03-09T00:00:00+00:00 | 114 | 3.081081 |
2021-03-10T00:00:00+00:00 | 83 | 2.593750 |
2021-03-11T00:00:00+00:00 | 109 | 2.725000 |
2021-03-12T00:00:00+00:00 | 75 | 2.027027 |
2021-03-13T00:00:00+00:00 | 158 | 4.647059 |
2021-03-14T00:00:00+00:00 | 73 | 2.433333 |
2021-03-15T00:00:00+00:00 | 73 | 2.517241 |
2021-03-16T00:00:00+00:00 | 52 | 1.575758 |
2021-03-17T00:00:00+00:00 | 64 | 2.064516 |
2021-03-18T00:00:00+00:00 | 65 | 2.096774 |
2021-03-19T00:00:00+00:00 | 182 | 3.500000 |
2021-03-20T00:00:00+00:00 | 121 | 2.880952 |
2021-03-21T00:00:00+00:00 | 157 | 3.925000 |
2021-03-22T00:00:00+00:00 | 94 | 2.410256 |
2021-03-23T00:00:00+00:00 | 34 | 1.416667 |
2021-03-24T00:00:00+00:00 | 51 | 1.888889 |
2021-03-25T00:00:00+00:00 | 120 | 2.857143 |
2021-03-26T00:00:00+00:00 | 122 | 3.485714 |
interval_start_timestamp | speaking_minutes |
---|---|
<fct> | <int> |
2019-03-29T00:00:00+00:00 | 0 |
2019-03-30T00:00:00+00:00 | 0 |
2019-03-31T00:00:00+00:00 | 0 |
2019-04-01T00:00:00+00:00 | 0 |
2019-04-02T00:00:00+00:00 | 0 |
2019-04-03T00:00:00+00:00 | 0 |
2019-04-04T00:00:00+00:00 | 0 |
2019-04-05T00:00:00+00:00 | 0 |
2019-04-06T00:00:00+00:00 | 0 |
2019-04-07T00:00:00+00:00 | 0 |
2019-04-08T00:00:00+00:00 | 0 |
2019-04-09T00:00:00+00:00 | 0 |
2019-04-10T00:00:00+00:00 | 0 |
2019-04-11T00:00:00+00:00 | 0 |
2019-04-12T00:00:00+00:00 | 0 |
2019-04-13T00:00:00+00:00 | 0 |
2019-04-14T00:00:00+00:00 | 0 |
2019-04-15T00:00:00+00:00 | 0 |
2019-04-16T00:00:00+00:00 | 0 |
2019-04-17T00:00:00+00:00 | 0 |
2019-04-18T00:00:00+00:00 | 0 |
2019-04-19T00:00:00+00:00 | 0 |
2019-04-20T00:00:00+00:00 | 0 |
2019-04-21T00:00:00+00:00 | 0 |
2019-04-22T00:00:00+00:00 | 0 |
2019-04-23T00:00:00+00:00 | 0 |
2019-04-24T00:00:00+00:00 | 0 |
2019-04-25T00:00:00+00:00 | 0 |
2019-04-26T00:00:00+00:00 | 0 |
2019-04-27T00:00:00+00:00 | 0 |
⋮ | ⋮ |
2021-02-25T00:00:00+00:00 | 1495 |
2021-02-26T00:00:00+00:00 | 913 |
2021-02-27T00:00:00+00:00 | 1118 |
2021-02-28T00:00:00+00:00 | 1354 |
2021-03-01T00:00:00+00:00 | 1269 |
2021-03-02T00:00:00+00:00 | 1200 |
2021-03-03T00:00:00+00:00 | 2031 |
2021-03-04T00:00:00+00:00 | 2293 |
2021-03-05T00:00:00+00:00 | 1124 |
2021-03-06T00:00:00+00:00 | 1398 |
2021-03-07T00:00:00+00:00 | 1460 |
2021-03-08T00:00:00+00:00 | 1834 |
2021-03-09T00:00:00+00:00 | 1523 |
2021-03-10T00:00:00+00:00 | 1119 |
2021-03-11T00:00:00+00:00 | 1878 |
2021-03-12T00:00:00+00:00 | 1429 |
2021-03-13T00:00:00+00:00 | 730 |
2021-03-14T00:00:00+00:00 | 567 |
2021-03-15T00:00:00+00:00 | 1282 |
2021-03-16T00:00:00+00:00 | 1234 |
2021-03-17T00:00:00+00:00 | 1146 |
2021-03-18T00:00:00+00:00 | 2464 |
2021-03-19T00:00:00+00:00 | 840 |
2021-03-20T00:00:00+00:00 | 428 |
2021-03-21T00:00:00+00:00 | 880 |
2021-03-22T00:00:00+00:00 | 1598 |
2021-03-23T00:00:00+00:00 | 873 |
2021-03-24T00:00:00+00:00 | 771 |
2021-03-25T00:00:00+00:00 | 1742 |
2021-03-26T00:00:00+00:00 | 1038 |
interval_start_timestamp | visitors | pct_communicated |
---|---|---|
<fct> | <int> | <dbl> |
2019-03-29T00:00:00+00:00 | 206 | 25.72816 |
2019-03-30T00:00:00+00:00 | 184 | 20.65217 |
2019-03-31T00:00:00+00:00 | 185 | 24.32432 |
2019-04-01T00:00:00+00:00 | 328 | 22.86585 |
2019-04-02T00:00:00+00:00 | 143 | 33.56643 |
2019-04-03T00:00:00+00:00 | 271 | 16.60517 |
2019-04-04T00:00:00+00:00 | 381 | 13.38583 |
2019-04-05T00:00:00+00:00 | 190 | 24.73684 |
2019-04-06T00:00:00+00:00 | 163 | 26.99387 |
2019-04-07T00:00:00+00:00 | 159 | 31.44654 |
2019-04-08T00:00:00+00:00 | 163 | 25.76687 |
2019-04-09T00:00:00+00:00 | 148 | 31.08108 |
2019-04-10T00:00:00+00:00 | 163 | 30.67485 |
2019-04-11T00:00:00+00:00 | 139 | 38.12950 |
2019-04-12T00:00:00+00:00 | 155 | 29.67742 |
2019-04-13T00:00:00+00:00 | 143 | 30.06993 |
2019-04-14T00:00:00+00:00 | 140 | 28.57143 |
2019-04-15T00:00:00+00:00 | 170 | 29.41176 |
2019-04-16T00:00:00+00:00 | 150 | 40.66667 |
2019-04-17T00:00:00+00:00 | 153 | 34.64052 |
2019-04-18T00:00:00+00:00 | 167 | 43.71257 |
2019-04-19T00:00:00+00:00 | 162 | 33.95062 |
2019-04-20T00:00:00+00:00 | 337 | 15.13353 |
2019-04-21T00:00:00+00:00 | 172 | 25.00000 |
2019-04-22T00:00:00+00:00 | 162 | 24.07407 |
2019-04-23T00:00:00+00:00 | 163 | 35.58282 |
2019-04-24T00:00:00+00:00 | 340 | 15.29412 |
2019-04-25T00:00:00+00:00 | 196 | 26.53061 |
2019-04-26T00:00:00+00:00 | 371 | 16.98113 |
2019-04-27T00:00:00+00:00 | 201 | 27.86070 |
⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00+00:00 | 172 | 23.255814 |
2021-02-26T00:00:00+00:00 | 167 | 19.161677 |
2021-02-27T00:00:00+00:00 | 208 | 20.673077 |
2021-02-28T00:00:00+00:00 | 167 | 17.964072 |
2021-03-01T00:00:00+00:00 | 164 | 18.292683 |
2021-03-02T00:00:00+00:00 | 199 | 15.075377 |
2021-03-03T00:00:00+00:00 | 163 | 18.404908 |
2021-03-04T00:00:00+00:00 | 163 | 20.858896 |
2021-03-05T00:00:00+00:00 | 179 | 17.318436 |
2021-03-06T00:00:00+00:00 | 304 | 9.539474 |
2021-03-07T00:00:00+00:00 | 162 | 15.432099 |
2021-03-08T00:00:00+00:00 | 234 | 13.675214 |
2021-03-09T00:00:00+00:00 | 160 | 23.125000 |
2021-03-10T00:00:00+00:00 | 156 | 20.512821 |
2021-03-11T00:00:00+00:00 | 553 | 7.233273 |
2021-03-12T00:00:00+00:00 | 253 | 14.624506 |
2021-03-13T00:00:00+00:00 | 237 | 14.345992 |
2021-03-14T00:00:00+00:00 | 147 | 20.408163 |
2021-03-15T00:00:00+00:00 | 154 | 18.831169 |
2021-03-16T00:00:00+00:00 | 154 | 21.428571 |
2021-03-17T00:00:00+00:00 | 141 | 21.985816 |
2021-03-18T00:00:00+00:00 | 153 | 20.261438 |
2021-03-19T00:00:00+00:00 | 268 | 19.402985 |
2021-03-20T00:00:00+00:00 | 658 | 6.382979 |
2021-03-21T00:00:00+00:00 | 170 | 23.529412 |
2021-03-22T00:00:00+00:00 | 174 | 22.413793 |
2021-03-23T00:00:00+00:00 | 143 | 16.783217 |
2021-03-24T00:00:00+00:00 | 157 | 17.197452 |
2021-03-25T00:00:00+00:00 | 165 | 25.454545 |
2021-03-26T00:00:00+00:00 | 573 | 6.108202 |
text = read.csv(paste(working,"popular-text-channels.csv",sep=""))
text
voice_channel = read.csv(paste(working,"popular-voice-channels.csv",sep=""))
voice_channel
interval_start_timestamp | channel_name | channel_id | readers | chatters | messages |
---|---|---|---|---|---|
<fct> | <fct> | <dbl> | <int> | <int> | <int> |
2021-03-27T00:00:00+00:00 | general | 2.124359e+17 | 218 | 51 | 264 |
2021-03-27T00:00:00+00:00 | hearthstone | 2.124361e+17 | 3 | 0 | 0 |
2021-03-27T00:00:00+00:00 | overwatch | 2.124362e+17 | 98 | 38 | 794 |
2021-03-27T00:00:00+00:00 | lol | 2.124362e+17 | 97 | 31 | 181 |
2021-03-27T00:00:00+00:00 | csgo | 2.124363e+17 | 29 | 4 | 5 |
2021-03-27T00:00:00+00:00 | dota2 | 2.124364e+17 | 17 | 5 | 11 |
2021-03-27T00:00:00+00:00 | announcements | 2.124422e+17 | 880 | 1 | 4 |
2021-03-27T00:00:00+00:00 | other-games | 2.127412e+17 | 46 | 7 | 13 |
2021-03-27T00:00:00+00:00 | suggestions | 2.130108e+17 | 27 | 4 | 5 |
2021-03-27T00:00:00+00:00 | memes | 2.170801e+17 | 71 | 11 | 36 |
2021-03-27T00:00:00+00:00 | rocketleague | 2.173062e+17 | 5 | 0 | 0 |
2021-03-27T00:00:00+00:00 | music_channel | 2.182282e+17 | 20 | 3 | 11 |
2021-03-27T00:00:00+00:00 | bot-stuff | 2.185181e+17 | 47 | 9 | 326 |
2021-03-27T00:00:00+00:00 | overwatch_info | 2.185562e+17 | 154 | 2 | 7 |
2021-03-27T00:00:00+00:00 | casual-smite | 2.187252e+17 | 1 | 0 | 0 |
2021-03-27T00:00:00+00:00 | lol_info | 2.254194e+17 | 212 | 4 | 8 |
2021-03-27T00:00:00+00:00 | runescape | 2.573993e+17 | 15 | 1 | 7 |
2021-03-27T00:00:00+00:00 | dota_info | 2.793684e+17 | 1 | 0 | 0 |
2021-03-27T00:00:00+00:00 | osu | 2.808585e+17 | 33 | 4 | 15 |
2021-03-27T00:00:00+00:00 | study_buddies | 2.971659e+17 | 23 | 8 | 34 |
2021-03-27T00:00:00+00:00 | testing-bots | 3.308046e+17 | 1 | 0 | 0 |
2021-03-27T00:00:00+00:00 | around-town | 3.511549e+17 | 28 | 9 | 16 |
2021-03-27T00:00:00+00:00 | console-games | 3.515872e+17 | 1 | 0 | 0 |
2021-03-27T00:00:00+00:00 | rainbow-6 | 3.595436e+17 | 21 | 4 | 9 |
2021-03-27T00:00:00+00:00 | tech-talk | 3.656845e+17 | 49 | 14 | 90 |
2021-03-27T00:00:00+00:00 | sports | 3.675733e+17 | 45 | 14 | 105 |
2021-03-27T00:00:00+00:00 | destiny2 | 3.731533e+17 | 18 | 2 | 4 |
2021-03-27T00:00:00+00:00 | anime | 3.733290e+17 | 70 | 19 | 74 |
2021-03-27T00:00:00+00:00 | smite_info | 3.776109e+17 | 22 | 1 | 1 |
2021-03-27T00:00:00+00:00 | crowns_feedback | 3.794238e+17 | 1 | 0 | 0 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-03-27T00:00:00+00:00 | valorant_info | 6.958404e+17 | 168 | 1 | 5 |
2021-03-27T00:00:00+00:00 | valorant_news | 6.964060e+17 | 20 | 1 | 3 |
2021-03-27T00:00:00+00:00 | valorant_lfg | 6.994457e+17 | 62 | 13 | 43 |
2021-03-27T00:00:00+00:00 | stream-highlights | 7.055643e+17 | 2 | 0 | 0 |
2021-03-27T00:00:00+00:00 | virtual-reality-info | 7.164619e+17 | 25 | 0 | 0 |
2021-03-27T00:00:00+00:00 | virtual-reality | 7.164626e+17 | 11 | 2 | 7 |
2021-03-27T00:00:00+00:00 | competitive-smite | 7.226659e+17 | 10 | 3 | 8 |
2021-03-27T00:00:00+00:00 | smash-info | 7.272015e+17 | 8 | 1 | 2 |
2021-03-27T00:00:00+00:00 | minecraft-rules | 7.333804e+17 | 1 | 0 | 0 |
2021-03-27T00:00:00+00:00 | altdentifier-updates | 7.362728e+17 | 5 | 0 | 0 |
2021-03-27T00:00:00+00:00 | moderator-only | 7.413646e+17 | 1 | 0 | 0 |
2021-03-27T00:00:00+00:00 | social-gaming-info | 7.505845e+17 | 37 | 1 | 5 |
2021-03-27T00:00:00+00:00 | marketplace-listings | 7.511623e+17 | 25 | 2 | 2 |
2021-03-27T00:00:00+00:00 | bot-updates | 7.512931e+17 | 1 | 4 | 6 |
2021-03-27T00:00:00+00:00 | yagpdb-bot-logs | 7.548220e+17 | 8 | 0 | 0 |
2021-03-27T00:00:00+00:00 | 3v3-lft | 7.556002e+17 | 5 | 2 | 2 |
2021-03-27T00:00:00+00:00 | tourney-info | 7.556008e+17 | 1 | 0 | 0 |
2021-03-27T00:00:00+00:00 | partner-servers | 7.603847e+17 | 5 | 0 | 0 |
2021-03-27T00:00:00+00:00 | read-me-first | 7.605702e+17 | 9 | 0 | 0 |
2021-03-27T00:00:00+00:00 | genshin-impact | 7.638568e+17 | 53 | 9 | 159 |
2021-03-27T00:00:00+00:00 | shib-logs | 7.697164e+17 | 3 | 0 | 0 |
2021-03-27T00:00:00+00:00 | server-logs | 7.697269e+17 | 4 | 0 | 0 |
2021-03-27T00:00:00+00:00 | cloud9-affiliate-discord | 7.768122e+17 | 87 | 1 | 9 |
2021-03-27T00:00:00+00:00 | tournament-screen-shots | 7.973465e+17 | 30 | 4 | 10 |
2021-03-27T00:00:00+00:00 | alea-3631 | 8.015882e+17 | 1 | 0 | 0 |
2021-03-27T00:00:00+00:00 | hearthstone-news | 8.040561e+17 | 1 | 0 | 0 |
2021-03-27T00:00:00+00:00 | server-change-log | 8.045228e+17 | 36 | 1 | 1 |
2021-03-27T00:00:00+00:00 | master-overwatch | 8.073712e+17 | 51 | 1 | 9 |
2021-03-27T00:00:00+00:00 | team-fortress-2 | 8.152788e+17 | 50 | 4 | 53 |
2021-03-27T00:00:00+00:00 | vc-context | 8.224238e+17 | 43 | 5 | 11 |
interval_start_timestamp | channel_name | channel_id | listeners | communicators |
---|---|---|---|---|
<fct> | <fct> | <dbl> | <int> | <int> |
2021-03-27T00:00:00+00:00 | AFK Channel | 2.559102e+17 | 7 | 0 |
2021-03-27T00:00:00+00:00 | Overwatch Oasis | 2.617080e+17 | 17 | 16 |
2021-03-27T00:00:00+00:00 | LoL In-House Lobby | 2.834215e+17 | 2 | 2 |
2021-03-27T00:00:00+00:00 | Overwatch Room 1 | 3.533817e+17 | 17 | 16 |
2021-03-27T00:00:00+00:00 | General Gaming | 5.960341e+17 | 10 | 10 |
2021-03-27T00:00:00+00:00 | Music Channel | 5.960341e+17 | 2 | 3 |
2021-03-27T00:00:00+00:00 | Overwatch Room 2 | 6.000934e+17 | 14 | 14 |
2021-03-27T00:00:00+00:00 | Throwstack Oasis | 6.153540e+17 | 14 | 14 |
2021-03-27T00:00:00+00:00 | Valorant Haven | 6.958620e+17 | 3 | 3 |
2021-03-27T00:00:00+00:00 | Social Gaming | 6.960872e+17 | 15 | 14 |
2021-03-27T00:00:00+00:00 | IE-LIVE | 7.687174e+17 | 1 | 0 |
2021-03-27T00:00:00+00:00 | Apex Oasis | 8.093469e+17 | 28 | 27 |
library(lubridate)
Datetime example
I grabbed this example from astrostats.psu. The Berkely Stat Dates page Dates and Times in R was a great reference for the code and values for datetime
Code | Value |
---|---|
%d | Day of the month (decimal number) |
%m | Month (decimal number) |
%b | Month (abbreviated) |
%B | Month (full name) |
%y | Year (2 digit) |
%Y | Year (4 digit) |
dates <- c("02/27/92", "02/27/92", "01/14/92", "02/28/92", "02/01/92")
times <- c("23:03:20", "22:29:56", "01:03:30", "18:21:03", "16:56:26")
x <- paste(dates, times)
strptime(x, "%m/%d/%y %H:%M:%S")
strptime(x, "%m/")
[1] "1992-02-27 23:03:20 CST" "1992-02-27 22:29:56 CST" [3] "1992-01-14 01:03:30 CST" "1992-02-28 18:21:03 CST" [5] "1992-02-01 16:56:26 CST"
[1] NA NA NA NA NA
Tests to investigate how to extract date time
These were scuffed tests I used to learn how to extract the date time
- the variable
test
made me realize removing+00:00
and replacing it with aZ
would make the data in a format that can be read by R - the variable
test2
was my attempt to try getting it for an entire column
test = "2021-03-27T00:00:00Z"
str(ymd_hms(test))
test2 = join$interval_start_timestamp
#test2
#ymd_hms(join$interval_start_timestamp)
head(strptime(test2, "%Y-%m-%dT%H:%M:%SZ"))
POSIXct[1:1], format: "2021-03-27"
[1] "2019-03-29 CDT" "2019-03-30 CDT" "2019-03-31 CDT" "2019-04-01 CDT" [5] "2019-04-02 CDT" "2019-04-03 CDT"
While performing my tests, I struggled understanding format of the date was in, a search of a 2021-03-27T00:00:00+00:00 datatype pointed me to a stack overflow page that helped me learn more about python functions Date Time Formats in Python.
Removing the plus sign
a search of R remove all text after plus sign helped me break through this barrier I found that this answer on stackoverflow was particularly helpful in removing the +
sign How to remove + (plus sign) from string in R?. gsub seemed to be the recommend choice among all answers
Removing the rest of zeros
I found the following stackoverflow answer that had a example for how to remove the rest of a string Remove all text before colon. I couldn't remember how to remove everything after the + so the following example from stevencarlislewalker's blog was particularly helpful in refreshing my memory Remove (or replace) everything before or after a specified character in R strings
gsub("\\+.*", 'Z', "2021-03-27T00:00:00+00:00")
these were tests I ran to automate this for all the datetime rows.
#join[1,1] = gsub("\\+.*", 'Z', join[1,1])
#join
join[,1] = gsub("\\+.*", 'Z', join[,1])
join
interval_start_timestamp | new_members | pct_communicated | pct_opened_channels |
---|---|---|---|
<chr> | <int> | <dbl> | <dbl> |
2019-03-29T00:00:00Z | 2 | 50.00000 | 50.00000 |
2019-03-30T00:00:00Z | 6 | 16.66667 | 33.33333 |
2019-03-31T00:00:00Z | 8 | 25.00000 | 37.50000 |
2019-04-01T00:00:00Z | 9 | 44.44444 | 33.33333 |
2019-04-02T00:00:00Z | 2 | 50.00000 | 100.00000 |
2019-04-03T00:00:00Z | 0 | NA | NA |
2019-04-04T00:00:00Z | 2 | 100.00000 | 100.00000 |
2019-04-05T00:00:00Z | 3 | 33.33333 | 0.00000 |
2019-04-06T00:00:00Z | 2 | 0.00000 | 0.00000 |
2019-04-07T00:00:00Z | 2 | 0.00000 | 0.00000 |
2019-04-08T00:00:00Z | 9 | 33.33333 | 33.33333 |
2019-04-09T00:00:00Z | 3 | 33.33333 | 33.33333 |
2019-04-10T00:00:00Z | 1 | 100.00000 | 100.00000 |
2019-04-11T00:00:00Z | 1 | 0.00000 | 100.00000 |
2019-04-12T00:00:00Z | 1 | 0.00000 | 100.00000 |
2019-04-13T00:00:00Z | 1 | 0.00000 | 100.00000 |
2019-04-14T00:00:00Z | 0 | NA | NA |
2019-04-15T00:00:00Z | 0 | NA | NA |
2019-04-16T00:00:00Z | 3 | 66.66667 | 0.00000 |
2019-04-17T00:00:00Z | 5 | 0.00000 | 20.00000 |
2019-04-18T00:00:00Z | 3 | 100.00000 | 33.33333 |
2019-04-19T00:00:00Z | 3 | 0.00000 | 33.33333 |
2019-04-20T00:00:00Z | 0 | NA | NA |
2019-04-21T00:00:00Z | 1 | 100.00000 | 100.00000 |
2019-04-22T00:00:00Z | 0 | NA | NA |
2019-04-23T00:00:00Z | 1 | 0.00000 | 0.00000 |
2019-04-24T00:00:00Z | 3 | 33.33333 | 0.00000 |
2019-04-25T00:00:00Z | 3 | 66.66667 | 66.66667 |
2019-04-26T00:00:00Z | 3 | 33.33333 | 33.33333 |
2019-04-27T00:00:00Z | 1 | 100.00000 | 0.00000 |
⋮ | ⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00Z | 1 | 0.00000 | 100.00000 |
2021-02-26T00:00:00Z | 5 | 40.00000 | 100.00000 |
2021-02-27T00:00:00Z | 8 | 12.50000 | 100.00000 |
2021-02-28T00:00:00Z | 5 | 20.00000 | 100.00000 |
2021-03-01T00:00:00Z | 2 | 0.00000 | 50.00000 |
2021-03-02T00:00:00Z | 6 | 16.66667 | 16.66667 |
2021-03-03T00:00:00Z | 5 | 0.00000 | 40.00000 |
2021-03-04T00:00:00Z | 8 | 0.00000 | 62.50000 |
2021-03-05T00:00:00Z | 3 | 33.33333 | 33.33333 |
2021-03-06T00:00:00Z | 3 | 0.00000 | 66.66667 |
2021-03-07T00:00:00Z | 3 | 0.00000 | 33.33333 |
2021-03-08T00:00:00Z | 7 | 14.28571 | 42.85714 |
2021-03-09T00:00:00Z | 7 | 0.00000 | 57.14286 |
2021-03-10T00:00:00Z | 5 | 0.00000 | 40.00000 |
2021-03-11T00:00:00Z | 1 | 0.00000 | 100.00000 |
2021-03-12T00:00:00Z | 11 | 18.18182 | 45.45455 |
2021-03-13T00:00:00Z | 4 | 0.00000 | 50.00000 |
2021-03-14T00:00:00Z | 1 | 0.00000 | 0.00000 |
2021-03-15T00:00:00Z | 1 | 0.00000 | 0.00000 |
2021-03-16T00:00:00Z | 6 | 0.00000 | 83.33333 |
2021-03-17T00:00:00Z | 7 | 0.00000 | 71.42857 |
2021-03-18T00:00:00Z | 1 | 0.00000 | 0.00000 |
2021-03-19T00:00:00Z | 5 | 0.00000 | 80.00000 |
2021-03-20T00:00:00Z | 2 | 0.00000 | 0.00000 |
2021-03-21T00:00:00Z | 6 | 33.33333 | 33.33333 |
2021-03-22T00:00:00Z | 5 | 20.00000 | 60.00000 |
2021-03-23T00:00:00Z | 1 | 0.00000 | 0.00000 |
2021-03-24T00:00:00Z | 4 | 0.00000 | 50.00000 |
2021-03-25T00:00:00Z | 1 | 0.00000 | 0.00000 |
2021-03-26T00:00:00Z | 4 | NA | NA |
split the interval_start_timestamp
Once I got it working on a row, I applied what I learned above to extract the year, month, and day from the initial datetime object
Later when I was generating the bar charts, I had issues ordering the data by calendar months, a quick search yielded Sorting months in R I learned that passing months
into factor
with the levels = month.name
would allow me to sort by the months
year = year(as.POSIXlt(join$interval_start_timestamp))
month = factor(months(as.POSIXlt(join$interval_start_timestamp)),levels = month.name)
day = weekdays(as.POSIXlt(join$interval_start_timestamp))
After making the split dataframes, I used a cbind to append the columns to the original dataset and reordered the dataset.
joins = cbind(join, year, month,day)
joins
joins = joins[,c(1,5,6,7,2,3,4)]
joins
interval_start_timestamp | new_members | pct_communicated | pct_opened_channels | year | month | day |
---|---|---|---|---|---|---|
<chr> | <int> | <dbl> | <dbl> | <dbl> | <fct> | <fct> |
2019-03-29T00:00:00Z | 2 | 50.00000 | 50.00000 | 2019 | March | Friday |
2019-03-30T00:00:00Z | 6 | 16.66667 | 33.33333 | 2019 | March | Saturday |
2019-03-31T00:00:00Z | 8 | 25.00000 | 37.50000 | 2019 | March | Sunday |
2019-04-01T00:00:00Z | 9 | 44.44444 | 33.33333 | 2019 | April | Monday |
2019-04-02T00:00:00Z | 2 | 50.00000 | 100.00000 | 2019 | April | Tuesday |
2019-04-03T00:00:00Z | 0 | NA | NA | 2019 | April | Wednesday |
2019-04-04T00:00:00Z | 2 | 100.00000 | 100.00000 | 2019 | April | Thursday |
2019-04-05T00:00:00Z | 3 | 33.33333 | 0.00000 | 2019 | April | Friday |
2019-04-06T00:00:00Z | 2 | 0.00000 | 0.00000 | 2019 | April | Saturday |
2019-04-07T00:00:00Z | 2 | 0.00000 | 0.00000 | 2019 | April | Sunday |
2019-04-08T00:00:00Z | 9 | 33.33333 | 33.33333 | 2019 | April | Monday |
2019-04-09T00:00:00Z | 3 | 33.33333 | 33.33333 | 2019 | April | Tuesday |
2019-04-10T00:00:00Z | 1 | 100.00000 | 100.00000 | 2019 | April | Wednesday |
2019-04-11T00:00:00Z | 1 | 0.00000 | 100.00000 | 2019 | April | Thursday |
2019-04-12T00:00:00Z | 1 | 0.00000 | 100.00000 | 2019 | April | Friday |
2019-04-13T00:00:00Z | 1 | 0.00000 | 100.00000 | 2019 | April | Saturday |
2019-04-14T00:00:00Z | 0 | NA | NA | 2019 | April | Sunday |
2019-04-15T00:00:00Z | 0 | NA | NA | 2019 | April | Monday |
2019-04-16T00:00:00Z | 3 | 66.66667 | 0.00000 | 2019 | April | Tuesday |
2019-04-17T00:00:00Z | 5 | 0.00000 | 20.00000 | 2019 | April | Wednesday |
2019-04-18T00:00:00Z | 3 | 100.00000 | 33.33333 | 2019 | April | Thursday |
2019-04-19T00:00:00Z | 3 | 0.00000 | 33.33333 | 2019 | April | Friday |
2019-04-20T00:00:00Z | 0 | NA | NA | 2019 | April | Saturday |
2019-04-21T00:00:00Z | 1 | 100.00000 | 100.00000 | 2019 | April | Sunday |
2019-04-22T00:00:00Z | 0 | NA | NA | 2019 | April | Monday |
2019-04-23T00:00:00Z | 1 | 0.00000 | 0.00000 | 2019 | April | Tuesday |
2019-04-24T00:00:00Z | 3 | 33.33333 | 0.00000 | 2019 | April | Wednesday |
2019-04-25T00:00:00Z | 3 | 66.66667 | 66.66667 | 2019 | April | Thursday |
2019-04-26T00:00:00Z | 3 | 33.33333 | 33.33333 | 2019 | April | Friday |
2019-04-27T00:00:00Z | 1 | 100.00000 | 0.00000 | 2019 | April | Saturday |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00Z | 1 | 0.00000 | 100.00000 | 2021 | February | Thursday |
2021-02-26T00:00:00Z | 5 | 40.00000 | 100.00000 | 2021 | February | Friday |
2021-02-27T00:00:00Z | 8 | 12.50000 | 100.00000 | 2021 | February | Saturday |
2021-02-28T00:00:00Z | 5 | 20.00000 | 100.00000 | 2021 | February | Sunday |
2021-03-01T00:00:00Z | 2 | 0.00000 | 50.00000 | 2021 | March | Monday |
2021-03-02T00:00:00Z | 6 | 16.66667 | 16.66667 | 2021 | March | Tuesday |
2021-03-03T00:00:00Z | 5 | 0.00000 | 40.00000 | 2021 | March | Wednesday |
2021-03-04T00:00:00Z | 8 | 0.00000 | 62.50000 | 2021 | March | Thursday |
2021-03-05T00:00:00Z | 3 | 33.33333 | 33.33333 | 2021 | March | Friday |
2021-03-06T00:00:00Z | 3 | 0.00000 | 66.66667 | 2021 | March | Saturday |
2021-03-07T00:00:00Z | 3 | 0.00000 | 33.33333 | 2021 | March | Sunday |
2021-03-08T00:00:00Z | 7 | 14.28571 | 42.85714 | 2021 | March | Monday |
2021-03-09T00:00:00Z | 7 | 0.00000 | 57.14286 | 2021 | March | Tuesday |
2021-03-10T00:00:00Z | 5 | 0.00000 | 40.00000 | 2021 | March | Wednesday |
2021-03-11T00:00:00Z | 1 | 0.00000 | 100.00000 | 2021 | March | Thursday |
2021-03-12T00:00:00Z | 11 | 18.18182 | 45.45455 | 2021 | March | Friday |
2021-03-13T00:00:00Z | 4 | 0.00000 | 50.00000 | 2021 | March | Saturday |
2021-03-14T00:00:00Z | 1 | 0.00000 | 0.00000 | 2021 | March | Sunday |
2021-03-15T00:00:00Z | 1 | 0.00000 | 0.00000 | 2021 | March | Monday |
2021-03-16T00:00:00Z | 6 | 0.00000 | 83.33333 | 2021 | March | Tuesday |
2021-03-17T00:00:00Z | 7 | 0.00000 | 71.42857 | 2021 | March | Wednesday |
2021-03-18T00:00:00Z | 1 | 0.00000 | 0.00000 | 2021 | March | Thursday |
2021-03-19T00:00:00Z | 5 | 0.00000 | 80.00000 | 2021 | March | Friday |
2021-03-20T00:00:00Z | 2 | 0.00000 | 0.00000 | 2021 | March | Saturday |
2021-03-21T00:00:00Z | 6 | 33.33333 | 33.33333 | 2021 | March | Sunday |
2021-03-22T00:00:00Z | 5 | 20.00000 | 60.00000 | 2021 | March | Monday |
2021-03-23T00:00:00Z | 1 | 0.00000 | 0.00000 | 2021 | March | Tuesday |
2021-03-24T00:00:00Z | 4 | 0.00000 | 50.00000 | 2021 | March | Wednesday |
2021-03-25T00:00:00Z | 1 | 0.00000 | 0.00000 | 2021 | March | Thursday |
2021-03-26T00:00:00Z | 4 | NA | NA | 2021 | March | Friday |
interval_start_timestamp | year | month | day | new_members | pct_communicated | pct_opened_channels |
---|---|---|---|---|---|---|
<chr> | <dbl> | <fct> | <fct> | <int> | <dbl> | <dbl> |
2019-03-29T00:00:00Z | 2019 | March | Friday | 2 | 50.00000 | 50.00000 |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 6 | 16.66667 | 33.33333 |
2019-03-31T00:00:00Z | 2019 | March | Sunday | 8 | 25.00000 | 37.50000 |
2019-04-01T00:00:00Z | 2019 | April | Monday | 9 | 44.44444 | 33.33333 |
2019-04-02T00:00:00Z | 2019 | April | Tuesday | 2 | 50.00000 | 100.00000 |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 0 | NA | NA |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 2 | 100.00000 | 100.00000 |
2019-04-05T00:00:00Z | 2019 | April | Friday | 3 | 33.33333 | 0.00000 |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 2 | 0.00000 | 0.00000 |
2019-04-07T00:00:00Z | 2019 | April | Sunday | 2 | 0.00000 | 0.00000 |
2019-04-08T00:00:00Z | 2019 | April | Monday | 9 | 33.33333 | 33.33333 |
2019-04-09T00:00:00Z | 2019 | April | Tuesday | 3 | 33.33333 | 33.33333 |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 1 | 100.00000 | 100.00000 |
2019-04-11T00:00:00Z | 2019 | April | Thursday | 1 | 0.00000 | 100.00000 |
2019-04-12T00:00:00Z | 2019 | April | Friday | 1 | 0.00000 | 100.00000 |
2019-04-13T00:00:00Z | 2019 | April | Saturday | 1 | 0.00000 | 100.00000 |
2019-04-14T00:00:00Z | 2019 | April | Sunday | 0 | NA | NA |
2019-04-15T00:00:00Z | 2019 | April | Monday | 0 | NA | NA |
2019-04-16T00:00:00Z | 2019 | April | Tuesday | 3 | 66.66667 | 0.00000 |
2019-04-17T00:00:00Z | 2019 | April | Wednesday | 5 | 0.00000 | 20.00000 |
2019-04-18T00:00:00Z | 2019 | April | Thursday | 3 | 100.00000 | 33.33333 |
2019-04-19T00:00:00Z | 2019 | April | Friday | 3 | 0.00000 | 33.33333 |
2019-04-20T00:00:00Z | 2019 | April | Saturday | 0 | NA | NA |
2019-04-21T00:00:00Z | 2019 | April | Sunday | 1 | 100.00000 | 100.00000 |
2019-04-22T00:00:00Z | 2019 | April | Monday | 0 | NA | NA |
2019-04-23T00:00:00Z | 2019 | April | Tuesday | 1 | 0.00000 | 0.00000 |
2019-04-24T00:00:00Z | 2019 | April | Wednesday | 3 | 33.33333 | 0.00000 |
2019-04-25T00:00:00Z | 2019 | April | Thursday | 3 | 66.66667 | 66.66667 |
2019-04-26T00:00:00Z | 2019 | April | Friday | 3 | 33.33333 | 33.33333 |
2019-04-27T00:00:00Z | 2019 | April | Saturday | 1 | 100.00000 | 0.00000 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00Z | 2021 | February | Thursday | 1 | 0.00000 | 100.00000 |
2021-02-26T00:00:00Z | 2021 | February | Friday | 5 | 40.00000 | 100.00000 |
2021-02-27T00:00:00Z | 2021 | February | Saturday | 8 | 12.50000 | 100.00000 |
2021-02-28T00:00:00Z | 2021 | February | Sunday | 5 | 20.00000 | 100.00000 |
2021-03-01T00:00:00Z | 2021 | March | Monday | 2 | 0.00000 | 50.00000 |
2021-03-02T00:00:00Z | 2021 | March | Tuesday | 6 | 16.66667 | 16.66667 |
2021-03-03T00:00:00Z | 2021 | March | Wednesday | 5 | 0.00000 | 40.00000 |
2021-03-04T00:00:00Z | 2021 | March | Thursday | 8 | 0.00000 | 62.50000 |
2021-03-05T00:00:00Z | 2021 | March | Friday | 3 | 33.33333 | 33.33333 |
2021-03-06T00:00:00Z | 2021 | March | Saturday | 3 | 0.00000 | 66.66667 |
2021-03-07T00:00:00Z | 2021 | March | Sunday | 3 | 0.00000 | 33.33333 |
2021-03-08T00:00:00Z | 2021 | March | Monday | 7 | 14.28571 | 42.85714 |
2021-03-09T00:00:00Z | 2021 | March | Tuesday | 7 | 0.00000 | 57.14286 |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 5 | 0.00000 | 40.00000 |
2021-03-11T00:00:00Z | 2021 | March | Thursday | 1 | 0.00000 | 100.00000 |
2021-03-12T00:00:00Z | 2021 | March | Friday | 11 | 18.18182 | 45.45455 |
2021-03-13T00:00:00Z | 2021 | March | Saturday | 4 | 0.00000 | 50.00000 |
2021-03-14T00:00:00Z | 2021 | March | Sunday | 1 | 0.00000 | 0.00000 |
2021-03-15T00:00:00Z | 2021 | March | Monday | 1 | 0.00000 | 0.00000 |
2021-03-16T00:00:00Z | 2021 | March | Tuesday | 6 | 0.00000 | 83.33333 |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 7 | 0.00000 | 71.42857 |
2021-03-18T00:00:00Z | 2021 | March | Thursday | 1 | 0.00000 | 0.00000 |
2021-03-19T00:00:00Z | 2021 | March | Friday | 5 | 0.00000 | 80.00000 |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 2 | 0.00000 | 0.00000 |
2021-03-21T00:00:00Z | 2021 | March | Sunday | 6 | 33.33333 | 33.33333 |
2021-03-22T00:00:00Z | 2021 | March | Monday | 5 | 20.00000 | 60.00000 |
2021-03-23T00:00:00Z | 2021 | March | Tuesday | 1 | 0.00000 | 0.00000 |
2021-03-24T00:00:00Z | 2021 | March | Wednesday | 4 | 0.00000 | 50.00000 |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 1 | 0.00000 | 0.00000 |
2021-03-26T00:00:00Z | 2021 | March | Friday | 4 | NA | NA |
factor(months(as.POSIXlt(join$interval_start_timestamp)),levels = month.name)[1:20]
run the following cell to extract year, month, day
# substring replacement
join[,1] = gsub("\\+.*", 'Z', join[,1])
# individual extraction
year = factor(year(as.POSIXlt(join[,1])))
month = factor(months(as.POSIXlt(join[,1])),levels = month.name)
day = weekdays(as.POSIXlt(join[,1]))
# appending new indivually extracted dates
joins = cbind(join, year, month,day)
joins = joins[,c(1,5,6,7,2,3,4)]
joins
interval_start_timestamp | year | month | day | new_members | pct_communicated | pct_opened_channels |
---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> |
2019-03-29T00:00:00Z | 2019 | March | Friday | 2 | 50.00000 | 50.00000 |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 6 | 16.66667 | 33.33333 |
2019-03-31T00:00:00Z | 2019 | March | Sunday | 8 | 25.00000 | 37.50000 |
2019-04-01T00:00:00Z | 2019 | April | Monday | 9 | 44.44444 | 33.33333 |
2019-04-02T00:00:00Z | 2019 | April | Tuesday | 2 | 50.00000 | 100.00000 |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 0 | NA | NA |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 2 | 100.00000 | 100.00000 |
2019-04-05T00:00:00Z | 2019 | April | Friday | 3 | 33.33333 | 0.00000 |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 2 | 0.00000 | 0.00000 |
2019-04-07T00:00:00Z | 2019 | April | Sunday | 2 | 0.00000 | 0.00000 |
2019-04-08T00:00:00Z | 2019 | April | Monday | 9 | 33.33333 | 33.33333 |
2019-04-09T00:00:00Z | 2019 | April | Tuesday | 3 | 33.33333 | 33.33333 |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 1 | 100.00000 | 100.00000 |
2019-04-11T00:00:00Z | 2019 | April | Thursday | 1 | 0.00000 | 100.00000 |
2019-04-12T00:00:00Z | 2019 | April | Friday | 1 | 0.00000 | 100.00000 |
2019-04-13T00:00:00Z | 2019 | April | Saturday | 1 | 0.00000 | 100.00000 |
2019-04-14T00:00:00Z | 2019 | April | Sunday | 0 | NA | NA |
2019-04-15T00:00:00Z | 2019 | April | Monday | 0 | NA | NA |
2019-04-16T00:00:00Z | 2019 | April | Tuesday | 3 | 66.66667 | 0.00000 |
2019-04-17T00:00:00Z | 2019 | April | Wednesday | 5 | 0.00000 | 20.00000 |
2019-04-18T00:00:00Z | 2019 | April | Thursday | 3 | 100.00000 | 33.33333 |
2019-04-19T00:00:00Z | 2019 | April | Friday | 3 | 0.00000 | 33.33333 |
2019-04-20T00:00:00Z | 2019 | April | Saturday | 0 | NA | NA |
2019-04-21T00:00:00Z | 2019 | April | Sunday | 1 | 100.00000 | 100.00000 |
2019-04-22T00:00:00Z | 2019 | April | Monday | 0 | NA | NA |
2019-04-23T00:00:00Z | 2019 | April | Tuesday | 1 | 0.00000 | 0.00000 |
2019-04-24T00:00:00Z | 2019 | April | Wednesday | 3 | 33.33333 | 0.00000 |
2019-04-25T00:00:00Z | 2019 | April | Thursday | 3 | 66.66667 | 66.66667 |
2019-04-26T00:00:00Z | 2019 | April | Friday | 3 | 33.33333 | 33.33333 |
2019-04-27T00:00:00Z | 2019 | April | Saturday | 1 | 100.00000 | 0.00000 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00Z | 2021 | February | Thursday | 1 | 0.00000 | 100.00000 |
2021-02-26T00:00:00Z | 2021 | February | Friday | 5 | 40.00000 | 100.00000 |
2021-02-27T00:00:00Z | 2021 | February | Saturday | 8 | 12.50000 | 100.00000 |
2021-02-28T00:00:00Z | 2021 | February | Sunday | 5 | 20.00000 | 100.00000 |
2021-03-01T00:00:00Z | 2021 | March | Monday | 2 | 0.00000 | 50.00000 |
2021-03-02T00:00:00Z | 2021 | March | Tuesday | 6 | 16.66667 | 16.66667 |
2021-03-03T00:00:00Z | 2021 | March | Wednesday | 5 | 0.00000 | 40.00000 |
2021-03-04T00:00:00Z | 2021 | March | Thursday | 8 | 0.00000 | 62.50000 |
2021-03-05T00:00:00Z | 2021 | March | Friday | 3 | 33.33333 | 33.33333 |
2021-03-06T00:00:00Z | 2021 | March | Saturday | 3 | 0.00000 | 66.66667 |
2021-03-07T00:00:00Z | 2021 | March | Sunday | 3 | 0.00000 | 33.33333 |
2021-03-08T00:00:00Z | 2021 | March | Monday | 7 | 14.28571 | 42.85714 |
2021-03-09T00:00:00Z | 2021 | March | Tuesday | 7 | 0.00000 | 57.14286 |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 5 | 0.00000 | 40.00000 |
2021-03-11T00:00:00Z | 2021 | March | Thursday | 1 | 0.00000 | 100.00000 |
2021-03-12T00:00:00Z | 2021 | March | Friday | 11 | 18.18182 | 45.45455 |
2021-03-13T00:00:00Z | 2021 | March | Saturday | 4 | 0.00000 | 50.00000 |
2021-03-14T00:00:00Z | 2021 | March | Sunday | 1 | 0.00000 | 0.00000 |
2021-03-15T00:00:00Z | 2021 | March | Monday | 1 | 0.00000 | 0.00000 |
2021-03-16T00:00:00Z | 2021 | March | Tuesday | 6 | 0.00000 | 83.33333 |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 7 | 0.00000 | 71.42857 |
2021-03-18T00:00:00Z | 2021 | March | Thursday | 1 | 0.00000 | 0.00000 |
2021-03-19T00:00:00Z | 2021 | March | Friday | 5 | 0.00000 | 80.00000 |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 2 | 0.00000 | 0.00000 |
2021-03-21T00:00:00Z | 2021 | March | Sunday | 6 | 33.33333 | 33.33333 |
2021-03-22T00:00:00Z | 2021 | March | Monday | 5 | 20.00000 | 60.00000 |
2021-03-23T00:00:00Z | 2021 | March | Tuesday | 1 | 0.00000 | 0.00000 |
2021-03-24T00:00:00Z | 2021 | March | Wednesday | 4 | 0.00000 | 50.00000 |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 1 | 0.00000 | 0.00000 |
2021-03-26T00:00:00Z | 2021 | March | Friday | 4 | NA | NA |
# substring replacement
source[,1] = gsub("\\+.*", 'Z', source[,1])
# individual extraction
year = factor(year(as.POSIXlt(source[,1])))
month = factor(months(as.POSIXlt(source[,1])),levels = month.name)
day = weekdays(as.POSIXlt(source[,1]))
# appending new indivually extracted dates
sources = cbind(source, year, month,day)
sources = sources[,c(1,5,6,7,2,3,4)]
sources
interval_start_timestamp | year | month | day | discovery_joins | invites | vanity_joins |
---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <int> | <int> |
2019-03-29T00:00:00Z | 2019 | March | Friday | 0 | 0 | 3 |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 0 | 0 | 7 |
2019-03-31T00:00:00Z | 2019 | March | Sunday | 0 | 0 | 8 |
2019-04-01T00:00:00Z | 2019 | April | Monday | 0 | 0 | 11 |
2019-04-02T00:00:00Z | 2019 | April | Tuesday | 0 | 0 | 2 |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 0 | 0 | 1 |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 0 | 0 | 3 |
2019-04-05T00:00:00Z | 2019 | April | Friday | 0 | 0 | 4 |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 0 | 0 | 3 |
2019-04-07T00:00:00Z | 2019 | April | Sunday | 0 | 0 | 2 |
2019-04-08T00:00:00Z | 2019 | April | Monday | 0 | 0 | 9 |
2019-04-09T00:00:00Z | 2019 | April | Tuesday | 0 | 0 | 3 |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 0 | 0 | 1 |
2019-04-11T00:00:00Z | 2019 | April | Thursday | 0 | 0 | 2 |
2019-04-12T00:00:00Z | 2019 | April | Friday | 0 | 0 | 1 |
2019-04-13T00:00:00Z | 2019 | April | Saturday | 0 | 0 | 1 |
2019-04-14T00:00:00Z | 2019 | April | Sunday | 0 | 0 | 0 |
2019-04-15T00:00:00Z | 2019 | April | Monday | 0 | 0 | 0 |
2019-04-16T00:00:00Z | 2019 | April | Tuesday | 0 | 0 | 7 |
2019-04-17T00:00:00Z | 2019 | April | Wednesday | 0 | 0 | 5 |
2019-04-18T00:00:00Z | 2019 | April | Thursday | 0 | 0 | 6 |
2019-04-19T00:00:00Z | 2019 | April | Friday | 0 | 0 | 3 |
2019-04-20T00:00:00Z | 2019 | April | Saturday | 0 | 0 | 2 |
2019-04-21T00:00:00Z | 2019 | April | Sunday | 0 | 0 | 1 |
2019-04-22T00:00:00Z | 2019 | April | Monday | 0 | 0 | 1 |
2019-04-23T00:00:00Z | 2019 | April | Tuesday | 0 | 0 | 3 |
2019-04-24T00:00:00Z | 2019 | April | Wednesday | 0 | 0 | 3 |
2019-04-25T00:00:00Z | 2019 | April | Thursday | 0 | 0 | 3 |
2019-04-26T00:00:00Z | 2019 | April | Friday | 0 | 0 | 4 |
2019-04-27T00:00:00Z | 2019 | April | Saturday | 0 | 0 | 3 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00Z | 2021 | February | Thursday | 0 | 0 | 1 |
2021-02-26T00:00:00Z | 2021 | February | Friday | 0 | 0 | 6 |
2021-02-27T00:00:00Z | 2021 | February | Saturday | 0 | 0 | 9 |
2021-02-28T00:00:00Z | 2021 | February | Sunday | 0 | 0 | 5 |
2021-03-01T00:00:00Z | 2021 | March | Monday | 0 | 0 | 3 |
2021-03-02T00:00:00Z | 2021 | March | Tuesday | 0 | 0 | 6 |
2021-03-03T00:00:00Z | 2021 | March | Wednesday | 0 | 0 | 5 |
2021-03-04T00:00:00Z | 2021 | March | Thursday | 0 | 0 | 8 |
2021-03-05T00:00:00Z | 2021 | March | Friday | 0 | 0 | 4 |
2021-03-06T00:00:00Z | 2021 | March | Saturday | 0 | 0 | 3 |
2021-03-07T00:00:00Z | 2021 | March | Sunday | 0 | 0 | 4 |
2021-03-08T00:00:00Z | 2021 | March | Monday | 0 | 0 | 7 |
2021-03-09T00:00:00Z | 2021 | March | Tuesday | 1 | 0 | 6 |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 0 | 0 | 5 |
2021-03-11T00:00:00Z | 2021 | March | Thursday | 0 | 0 | 2 |
2021-03-12T00:00:00Z | 2021 | March | Friday | 0 | 0 | 11 |
2021-03-13T00:00:00Z | 2021 | March | Saturday | 1 | 0 | 3 |
2021-03-14T00:00:00Z | 2021 | March | Sunday | 0 | 0 | 1 |
2021-03-15T00:00:00Z | 2021 | March | Monday | 0 | 0 | 2 |
2021-03-16T00:00:00Z | 2021 | March | Tuesday | 1 | 0 | 6 |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 1 | 0 | 9 |
2021-03-18T00:00:00Z | 2021 | March | Thursday | 0 | 0 | 1 |
2021-03-19T00:00:00Z | 2021 | March | Friday | 1 | 0 | 4 |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 0 | 0 | 2 |
2021-03-21T00:00:00Z | 2021 | March | Sunday | 0 | 0 | 7 |
2021-03-22T00:00:00Z | 2021 | March | Monday | 0 | 0 | 6 |
2021-03-23T00:00:00Z | 2021 | March | Tuesday | 0 | 0 | 1 |
2021-03-24T00:00:00Z | 2021 | March | Wednesday | 0 | 0 | 5 |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 0 | 0 | 2 |
2021-03-26T00:00:00Z | 2021 | March | Friday | 0 | 0 | 4 |
# substring replacement
leave[,1] = gsub("\\+.*", 'Z', leave[,1])
# individual extraction
year = factor(year(as.POSIXlt(leave[,1])))
month = factor(months(as.POSIXlt(leave[,1])),levels = month.name)
day = weekdays(as.POSIXlt(leave[,1]))
# appending new indivually extracted dates
leave
leaves = cbind(leave, year, month,day)
leaves
leaves = leaves[,c(1,4,5,6,2,3)]
leaves
interval_start_timestamp | days_in_guild | leavers |
---|---|---|
<chr> | <fct> | <int> |
2019-03-29T00:00:00Z | 'Members for 1 month+' | 1 |
2019-03-30T00:00:00Z | 'Members for 1 month+' | 1 |
2019-03-30T00:00:00Z | 'Members for < 1 month' | 1 |
2019-03-31T00:00:00Z | 'Members for 1 month+' | 2 |
2019-03-31T00:00:00Z | 'Members for < 1 month' | 1 |
2019-04-01T00:00:00Z | 'Members for 1 month+' | 4 |
2019-04-02T00:00:00Z | 'Members for 1 month+' | 1 |
2019-04-03T00:00:00Z | 'Members for 1 month+' | 2 |
2019-04-03T00:00:00Z | 'Members for < 1 month' | 2 |
2019-04-04T00:00:00Z | 'Members for 1 month+' | 2 |
2019-04-04T00:00:00Z | 'Members for < 1 month' | 2 |
2019-04-05T00:00:00Z | 'Members for 1 month+' | 3 |
2019-04-06T00:00:00Z | 'Members for 1 month+' | 1 |
2019-04-06T00:00:00Z | 'Members for < 1 month' | 1 |
2019-04-07T00:00:00Z | 'Members for 1 month+' | 1 |
2019-04-07T00:00:00Z | 'Members for < 1 month' | 2 |
2019-04-08T00:00:00Z | 'Members for 1 month+' | 1 |
2019-04-08T00:00:00Z | 'Members for < 1 month' | 1 |
2019-04-09T00:00:00Z | 'Members for 1 month+' | 1 |
2019-04-09T00:00:00Z | 'Members for < 1 month' | 1 |
2019-04-10T00:00:00Z | 'Members for 1 month+' | 2 |
2019-04-10T00:00:00Z | 'Members for < 1 month' | 1 |
2019-04-11T00:00:00Z | 'Members for 1 month+' | 0 |
2019-04-12T00:00:00Z | 'Members for 1 month+' | 1 |
2019-04-13T00:00:00Z | 'Members for < 1 month' | 1 |
2019-04-14T00:00:00Z | 'Members for 1 month+' | 2 |
2019-04-15T00:00:00Z | 'Members for 1 month+' | 1 |
2019-04-15T00:00:00Z | 'Members for < 1 month' | 1 |
2019-04-16T00:00:00Z | 'Members for 1 month+' | 3 |
2019-04-16T00:00:00Z | 'Members for < 1 month' | 1 |
⋮ | ⋮ | ⋮ |
2021-03-09T00:00:00Z | 'Members for 1 month+' | 2 |
2021-03-09T00:00:00Z | 'Members for < 1 month' | 1 |
2021-03-10T00:00:00Z | 'Members for 1 month+' | 2 |
2021-03-10T00:00:00Z | 'Members for < 1 month' | 3 |
2021-03-11T00:00:00Z | 'Members for 1 month+' | 2 |
2021-03-12T00:00:00Z | 'Members for 1 month+' | 1 |
2021-03-12T00:00:00Z | 'Members for < 1 month' | 5 |
2021-03-13T00:00:00Z | 'Members for < 1 month' | 1 |
2021-03-14T00:00:00Z | 'Members for 1 month+' | 1 |
2021-03-14T00:00:00Z | 'Members for < 1 month' | 1 |
2021-03-15T00:00:00Z | 'Members for 1 month+' | 2 |
2021-03-16T00:00:00Z | 'Members for 1 month+' | 1 |
2021-03-16T00:00:00Z | 'Members for < 1 month' | 3 |
2021-03-17T00:00:00Z | 'Members for 1 month+' | 4 |
2021-03-17T00:00:00Z | 'Members for < 1 month' | 2 |
2021-03-18T00:00:00Z | 'Members for < 1 month' | 1 |
2021-03-19T00:00:00Z | 'Members for 1 month+' | 2 |
2021-03-19T00:00:00Z | 'Members for < 1 month' | 2 |
2021-03-20T00:00:00Z | 'Members for 1 month+' | 5 |
2021-03-20T00:00:00Z | 'Members for < 1 month' | 1 |
2021-03-21T00:00:00Z | 'Members for 1 month+' | 1 |
2021-03-21T00:00:00Z | 'Members for < 1 month' | 3 |
2021-03-22T00:00:00Z | 'Members for 1 month+' | 1 |
2021-03-23T00:00:00Z | 'Members for 1 month+' | 3 |
2021-03-23T00:00:00Z | 'Members for < 1 month' | 1 |
2021-03-24T00:00:00Z | 'Members for 1 month+' | 0 |
2021-03-25T00:00:00Z | 'Members for 1 month+' | 2 |
2021-03-25T00:00:00Z | 'Members for < 1 month' | 1 |
2021-03-26T00:00:00Z | 'Members for 1 month+' | 3 |
2021-03-26T00:00:00Z | 'Members for < 1 month' | 1 |
interval_start_timestamp | days_in_guild | leavers | year | month | day |
---|---|---|---|---|---|
<chr> | <fct> | <int> | <fct> | <fct> | <fct> |
2019-03-29T00:00:00Z | 'Members for 1 month+' | 1 | 2019 | March | Friday |
2019-03-30T00:00:00Z | 'Members for 1 month+' | 1 | 2019 | March | Saturday |
2019-03-30T00:00:00Z | 'Members for < 1 month' | 1 | 2019 | March | Saturday |
2019-03-31T00:00:00Z | 'Members for 1 month+' | 2 | 2019 | March | Sunday |
2019-03-31T00:00:00Z | 'Members for < 1 month' | 1 | 2019 | March | <span style=white-space:pre-wrap>Sunday </span> |
2019-04-01T00:00:00Z | 'Members for 1 month+' | 4 | 2019 | April | Monday |
2019-04-02T00:00:00Z | 'Members for 1 month+' | 1 | 2019 | April | Tuesday |
2019-04-03T00:00:00Z | 'Members for 1 month+' | 2 | 2019 | April | Wednesday |
2019-04-03T00:00:00Z | 'Members for < 1 month' | 2 | 2019 | April | Wednesday |
2019-04-04T00:00:00Z | 'Members for 1 month+' | 2 | 2019 | April | Thursday |
2019-04-04T00:00:00Z | 'Members for < 1 month' | 2 | 2019 | April | Thursday |
2019-04-05T00:00:00Z | 'Members for 1 month+' | 3 | 2019 | April | Friday |
2019-04-06T00:00:00Z | 'Members for 1 month+' | 1 | 2019 | April | Saturday |
2019-04-06T00:00:00Z | 'Members for < 1 month' | 1 | 2019 | April | Saturday |
2019-04-07T00:00:00Z | 'Members for 1 month+' | 1 | 2019 | April | Sunday |
2019-04-07T00:00:00Z | 'Members for < 1 month' | 2 | 2019 | April | <span style=white-space:pre-wrap>Sunday </span> |
2019-04-08T00:00:00Z | 'Members for 1 month+' | 1 | 2019 | April | Monday |
2019-04-08T00:00:00Z | 'Members for < 1 month' | 1 | 2019 | April | <span style=white-space:pre-wrap>Monday </span> |
2019-04-09T00:00:00Z | 'Members for 1 month+' | 1 | 2019 | April | Tuesday |
2019-04-09T00:00:00Z | 'Members for < 1 month' | 1 | 2019 | April | <span style=white-space:pre-wrap>Tuesday </span> |
2019-04-10T00:00:00Z | 'Members for 1 month+' | 2 | 2019 | April | Wednesday |
2019-04-10T00:00:00Z | 'Members for < 1 month' | 1 | 2019 | April | Wednesday |
2019-04-11T00:00:00Z | 'Members for 1 month+' | 0 | 2019 | April | Thursday |
2019-04-12T00:00:00Z | 'Members for 1 month+' | 1 | 2019 | April | Friday |
2019-04-13T00:00:00Z | 'Members for < 1 month' | 1 | 2019 | April | Saturday |
2019-04-14T00:00:00Z | 'Members for 1 month+' | 2 | 2019 | April | Sunday |
2019-04-15T00:00:00Z | 'Members for 1 month+' | 1 | 2019 | April | Monday |
2019-04-15T00:00:00Z | 'Members for < 1 month' | 1 | 2019 | April | <span style=white-space:pre-wrap>Monday </span> |
2019-04-16T00:00:00Z | 'Members for 1 month+' | 3 | 2019 | April | Tuesday |
2019-04-16T00:00:00Z | 'Members for < 1 month' | 1 | 2019 | April | <span style=white-space:pre-wrap>Tuesday </span> |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-03-09T00:00:00Z | 'Members for 1 month+' | 2 | 2021 | March | Tuesday |
2021-03-09T00:00:00Z | 'Members for < 1 month' | 1 | 2021 | March | <span style=white-space:pre-wrap>Tuesday </span> |
2021-03-10T00:00:00Z | 'Members for 1 month+' | 2 | 2021 | March | Wednesday |
2021-03-10T00:00:00Z | 'Members for < 1 month' | 3 | 2021 | March | Wednesday |
2021-03-11T00:00:00Z | 'Members for 1 month+' | 2 | 2021 | March | Thursday |
2021-03-12T00:00:00Z | 'Members for 1 month+' | 1 | 2021 | March | Friday |
2021-03-12T00:00:00Z | 'Members for < 1 month' | 5 | 2021 | March | <span style=white-space:pre-wrap>Friday </span> |
2021-03-13T00:00:00Z | 'Members for < 1 month' | 1 | 2021 | March | Saturday |
2021-03-14T00:00:00Z | 'Members for 1 month+' | 1 | 2021 | March | Sunday |
2021-03-14T00:00:00Z | 'Members for < 1 month' | 1 | 2021 | March | <span style=white-space:pre-wrap>Sunday </span> |
2021-03-15T00:00:00Z | 'Members for 1 month+' | 2 | 2021 | March | Monday |
2021-03-16T00:00:00Z | 'Members for 1 month+' | 1 | 2021 | March | Tuesday |
2021-03-16T00:00:00Z | 'Members for < 1 month' | 3 | 2021 | March | <span style=white-space:pre-wrap>Tuesday </span> |
2021-03-17T00:00:00Z | 'Members for 1 month+' | 4 | 2021 | March | Wednesday |
2021-03-17T00:00:00Z | 'Members for < 1 month' | 2 | 2021 | March | Wednesday |
2021-03-18T00:00:00Z | 'Members for < 1 month' | 1 | 2021 | March | Thursday |
2021-03-19T00:00:00Z | 'Members for 1 month+' | 2 | 2021 | March | Friday |
2021-03-19T00:00:00Z | 'Members for < 1 month' | 2 | 2021 | March | <span style=white-space:pre-wrap>Friday </span> |
2021-03-20T00:00:00Z | 'Members for 1 month+' | 5 | 2021 | March | Saturday |
2021-03-20T00:00:00Z | 'Members for < 1 month' | 1 | 2021 | March | Saturday |
2021-03-21T00:00:00Z | 'Members for 1 month+' | 1 | 2021 | March | Sunday |
2021-03-21T00:00:00Z | 'Members for < 1 month' | 3 | 2021 | March | <span style=white-space:pre-wrap>Sunday </span> |
2021-03-22T00:00:00Z | 'Members for 1 month+' | 1 | 2021 | March | Monday |
2021-03-23T00:00:00Z | 'Members for 1 month+' | 3 | 2021 | March | Tuesday |
2021-03-23T00:00:00Z | 'Members for < 1 month' | 1 | 2021 | March | <span style=white-space:pre-wrap>Tuesday </span> |
2021-03-24T00:00:00Z | 'Members for 1 month+' | 0 | 2021 | March | Wednesday |
2021-03-25T00:00:00Z | 'Members for 1 month+' | 2 | 2021 | March | Thursday |
2021-03-25T00:00:00Z | 'Members for < 1 month' | 1 | 2021 | March | Thursday |
2021-03-26T00:00:00Z | 'Members for 1 month+' | 3 | 2021 | March | Friday |
2021-03-26T00:00:00Z | 'Members for < 1 month' | 1 | 2021 | March | <span style=white-space:pre-wrap>Friday </span> |
interval_start_timestamp | year | month | day | days_in_guild | leavers |
---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <fct> | <int> |
2019-03-29T00:00:00Z | 2019 | March | Friday | 'Members for 1 month+' | 1 |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 'Members for 1 month+' | 1 |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 'Members for < 1 month' | 1 |
2019-03-31T00:00:00Z | 2019 | March | Sunday | 'Members for 1 month+' | 2 |
2019-03-31T00:00:00Z | 2019 | March | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 1 |
2019-04-01T00:00:00Z | 2019 | April | Monday | 'Members for 1 month+' | 4 |
2019-04-02T00:00:00Z | 2019 | April | Tuesday | 'Members for 1 month+' | 1 |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 'Members for 1 month+' | 2 |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 'Members for < 1 month' | 2 |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 'Members for 1 month+' | 2 |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 'Members for < 1 month' | 2 |
2019-04-05T00:00:00Z | 2019 | April | Friday | 'Members for 1 month+' | 3 |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 'Members for 1 month+' | 1 |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 'Members for < 1 month' | 1 |
2019-04-07T00:00:00Z | 2019 | April | Sunday | 'Members for 1 month+' | 1 |
2019-04-07T00:00:00Z | 2019 | April | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 2 |
2019-04-08T00:00:00Z | 2019 | April | Monday | 'Members for 1 month+' | 1 |
2019-04-08T00:00:00Z | 2019 | April | <span style=white-space:pre-wrap>Monday </span> | 'Members for < 1 month' | 1 |
2019-04-09T00:00:00Z | 2019 | April | Tuesday | 'Members for 1 month+' | 1 |
2019-04-09T00:00:00Z | 2019 | April | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 'Members for 1 month+' | 2 |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 'Members for < 1 month' | 1 |
2019-04-11T00:00:00Z | 2019 | April | Thursday | 'Members for 1 month+' | 0 |
2019-04-12T00:00:00Z | 2019 | April | Friday | 'Members for 1 month+' | 1 |
2019-04-13T00:00:00Z | 2019 | April | Saturday | 'Members for < 1 month' | 1 |
2019-04-14T00:00:00Z | 2019 | April | Sunday | 'Members for 1 month+' | 2 |
2019-04-15T00:00:00Z | 2019 | April | Monday | 'Members for 1 month+' | 1 |
2019-04-15T00:00:00Z | 2019 | April | <span style=white-space:pre-wrap>Monday </span> | 'Members for < 1 month' | 1 |
2019-04-16T00:00:00Z | 2019 | April | Tuesday | 'Members for 1 month+' | 3 |
2019-04-16T00:00:00Z | 2019 | April | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-03-09T00:00:00Z | 2021 | March | Tuesday | 'Members for 1 month+' | 2 |
2021-03-09T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 'Members for 1 month+' | 2 |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 'Members for < 1 month' | 3 |
2021-03-11T00:00:00Z | 2021 | March | Thursday | 'Members for 1 month+' | 2 |
2021-03-12T00:00:00Z | 2021 | March | Friday | 'Members for 1 month+' | 1 |
2021-03-12T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 5 |
2021-03-13T00:00:00Z | 2021 | March | Saturday | 'Members for < 1 month' | 1 |
2021-03-14T00:00:00Z | 2021 | March | Sunday | 'Members for 1 month+' | 1 |
2021-03-14T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 1 |
2021-03-15T00:00:00Z | 2021 | March | Monday | 'Members for 1 month+' | 2 |
2021-03-16T00:00:00Z | 2021 | March | Tuesday | 'Members for 1 month+' | 1 |
2021-03-16T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 3 |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 'Members for 1 month+' | 4 |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 'Members for < 1 month' | 2 |
2021-03-18T00:00:00Z | 2021 | March | Thursday | 'Members for < 1 month' | 1 |
2021-03-19T00:00:00Z | 2021 | March | Friday | 'Members for 1 month+' | 2 |
2021-03-19T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 2 |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 'Members for 1 month+' | 5 |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 'Members for < 1 month' | 1 |
2021-03-21T00:00:00Z | 2021 | March | Sunday | 'Members for 1 month+' | 1 |
2021-03-21T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 3 |
2021-03-22T00:00:00Z | 2021 | March | Monday | 'Members for 1 month+' | 1 |
2021-03-23T00:00:00Z | 2021 | March | Tuesday | 'Members for 1 month+' | 3 |
2021-03-23T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 |
2021-03-24T00:00:00Z | 2021 | March | Wednesday | 'Members for 1 month+' | 0 |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 'Members for 1 month+' | 2 |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 'Members for < 1 month' | 1 |
2021-03-26T00:00:00Z | 2021 | March | Friday | 'Members for 1 month+' | 3 |
2021-03-26T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 1 |
# substring replacement
message[,1] = gsub("\\+.*", 'Z', message[,1])
# individual extraction
year = factor(year(as.POSIXlt(message[,1])))
month = factor(months(as.POSIXlt(message[,1])),levels = month.name)
day = weekdays(as.POSIXlt(message[,1]))
# appending new indivually extracted dates
messages = cbind(message, year, month,day)
messages
messages = messages[,c(1,4,5,6,2,3)]
messages
interval_start_timestamp | messages | messages_per_communicator | year | month | day |
---|---|---|---|---|---|
<chr> | <int> | <dbl> | <fct> | <fct> | <fct> |
2019-03-29T00:00:00Z | 334 | 6.301887 | 2019 | March | Friday |
2019-03-30T00:00:00Z | 236 | 6.210526 | 2019 | March | Saturday |
2019-03-31T00:00:00Z | 364 | 8.088889 | 2019 | March | Sunday |
2019-04-01T00:00:00Z | 404 | 5.386667 | 2019 | April | Monday |
2019-04-02T00:00:00Z | 543 | 11.312500 | 2019 | April | Tuesday |
2019-04-03T00:00:00Z | 324 | 7.200000 | 2019 | April | Wednesday |
2019-04-04T00:00:00Z | 556 | 10.901961 | 2019 | April | Thursday |
2019-04-05T00:00:00Z | 273 | 5.808511 | 2019 | April | Friday |
2019-04-06T00:00:00Z | 335 | 7.613636 | 2019 | April | Saturday |
2019-04-07T00:00:00Z | 1102 | 22.040000 | 2019 | April | Sunday |
2019-04-08T00:00:00Z | 188 | 4.476190 | 2019 | April | Monday |
2019-04-09T00:00:00Z | 399 | 8.673913 | 2019 | April | Tuesday |
2019-04-10T00:00:00Z | 531 | 10.620000 | 2019 | April | Wednesday |
2019-04-11T00:00:00Z | 689 | 13.000000 | 2019 | April | Thursday |
2019-04-12T00:00:00Z | 418 | 9.086957 | 2019 | April | Friday |
2019-04-13T00:00:00Z | 566 | 13.162791 | 2019 | April | Saturday |
2019-04-14T00:00:00Z | 481 | 12.025000 | 2019 | April | Sunday |
2019-04-15T00:00:00Z | 659 | 13.180000 | 2019 | April | Monday |
2019-04-16T00:00:00Z | 779 | 12.770492 | 2019 | April | Tuesday |
2019-04-17T00:00:00Z | 596 | 11.245283 | 2019 | April | Wednesday |
2019-04-18T00:00:00Z | 1143 | 15.657534 | 2019 | April | Thursday |
2019-04-19T00:00:00Z | 898 | 16.327273 | 2019 | April | Friday |
2019-04-20T00:00:00Z | 331 | 6.490196 | 2019 | April | Saturday |
2019-04-21T00:00:00Z | 473 | 11.000000 | 2019 | April | Sunday |
2019-04-22T00:00:00Z | 283 | 7.256410 | 2019 | April | Monday |
2019-04-23T00:00:00Z | 1270 | 21.896552 | 2019 | April | Tuesday |
2019-04-24T00:00:00Z | 746 | 14.346154 | 2019 | April | Wednesday |
2019-04-25T00:00:00Z | 287 | 5.519231 | 2019 | April | Thursday |
2019-04-26T00:00:00Z | 728 | 11.555556 | 2019 | April | Friday |
2019-04-27T00:00:00Z | 691 | 12.339286 | 2019 | April | Saturday |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00Z | 138 | 3.450000 | 2021 | February | Thursday |
2021-02-26T00:00:00Z | 78 | 2.437500 | 2021 | February | Friday |
2021-02-27T00:00:00Z | 93 | 2.162791 | 2021 | February | Saturday |
2021-02-28T00:00:00Z | 46 | 1.533333 | 2021 | February | Sunday |
2021-03-01T00:00:00Z | 53 | 1.766667 | 2021 | March | Monday |
2021-03-02T00:00:00Z | 72 | 2.400000 | 2021 | March | Tuesday |
2021-03-03T00:00:00Z | 122 | 4.066667 | 2021 | March | Wednesday |
2021-03-04T00:00:00Z | 168 | 4.941176 | 2021 | March | Thursday |
2021-03-05T00:00:00Z | 74 | 2.387097 | 2021 | March | Friday |
2021-03-06T00:00:00Z | 43 | 1.482759 | 2021 | March | Saturday |
2021-03-07T00:00:00Z | 43 | 1.720000 | 2021 | March | Sunday |
2021-03-08T00:00:00Z | 106 | 3.312500 | 2021 | March | Monday |
2021-03-09T00:00:00Z | 114 | 3.081081 | 2021 | March | Tuesday |
2021-03-10T00:00:00Z | 83 | 2.593750 | 2021 | March | Wednesday |
2021-03-11T00:00:00Z | 109 | 2.725000 | 2021 | March | Thursday |
2021-03-12T00:00:00Z | 75 | 2.027027 | 2021 | March | Friday |
2021-03-13T00:00:00Z | 158 | 4.647059 | 2021 | March | Saturday |
2021-03-14T00:00:00Z | 73 | 2.433333 | 2021 | March | Sunday |
2021-03-15T00:00:00Z | 73 | 2.517241 | 2021 | March | Monday |
2021-03-16T00:00:00Z | 52 | 1.575758 | 2021 | March | Tuesday |
2021-03-17T00:00:00Z | 64 | 2.064516 | 2021 | March | Wednesday |
2021-03-18T00:00:00Z | 65 | 2.096774 | 2021 | March | Thursday |
2021-03-19T00:00:00Z | 182 | 3.500000 | 2021 | March | Friday |
2021-03-20T00:00:00Z | 121 | 2.880952 | 2021 | March | Saturday |
2021-03-21T00:00:00Z | 157 | 3.925000 | 2021 | March | Sunday |
2021-03-22T00:00:00Z | 94 | 2.410256 | 2021 | March | Monday |
2021-03-23T00:00:00Z | 34 | 1.416667 | 2021 | March | Tuesday |
2021-03-24T00:00:00Z | 51 | 1.888889 | 2021 | March | Wednesday |
2021-03-25T00:00:00Z | 120 | 2.857143 | 2021 | March | Thursday |
2021-03-26T00:00:00Z | 122 | 3.485714 | 2021 | March | Friday |
interval_start_timestamp | year | month | day | messages | messages_per_communicator |
---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> |
2019-03-29T00:00:00Z | 2019 | March | Friday | 334 | 6.301887 |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 236 | 6.210526 |
2019-03-31T00:00:00Z | 2019 | March | Sunday | 364 | 8.088889 |
2019-04-01T00:00:00Z | 2019 | April | Monday | 404 | 5.386667 |
2019-04-02T00:00:00Z | 2019 | April | Tuesday | 543 | 11.312500 |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 324 | 7.200000 |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 556 | 10.901961 |
2019-04-05T00:00:00Z | 2019 | April | Friday | 273 | 5.808511 |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 335 | 7.613636 |
2019-04-07T00:00:00Z | 2019 | April | Sunday | 1102 | 22.040000 |
2019-04-08T00:00:00Z | 2019 | April | Monday | 188 | 4.476190 |
2019-04-09T00:00:00Z | 2019 | April | Tuesday | 399 | 8.673913 |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 531 | 10.620000 |
2019-04-11T00:00:00Z | 2019 | April | Thursday | 689 | 13.000000 |
2019-04-12T00:00:00Z | 2019 | April | Friday | 418 | 9.086957 |
2019-04-13T00:00:00Z | 2019 | April | Saturday | 566 | 13.162791 |
2019-04-14T00:00:00Z | 2019 | April | Sunday | 481 | 12.025000 |
2019-04-15T00:00:00Z | 2019 | April | Monday | 659 | 13.180000 |
2019-04-16T00:00:00Z | 2019 | April | Tuesday | 779 | 12.770492 |
2019-04-17T00:00:00Z | 2019 | April | Wednesday | 596 | 11.245283 |
2019-04-18T00:00:00Z | 2019 | April | Thursday | 1143 | 15.657534 |
2019-04-19T00:00:00Z | 2019 | April | Friday | 898 | 16.327273 |
2019-04-20T00:00:00Z | 2019 | April | Saturday | 331 | 6.490196 |
2019-04-21T00:00:00Z | 2019 | April | Sunday | 473 | 11.000000 |
2019-04-22T00:00:00Z | 2019 | April | Monday | 283 | 7.256410 |
2019-04-23T00:00:00Z | 2019 | April | Tuesday | 1270 | 21.896552 |
2019-04-24T00:00:00Z | 2019 | April | Wednesday | 746 | 14.346154 |
2019-04-25T00:00:00Z | 2019 | April | Thursday | 287 | 5.519231 |
2019-04-26T00:00:00Z | 2019 | April | Friday | 728 | 11.555556 |
2019-04-27T00:00:00Z | 2019 | April | Saturday | 691 | 12.339286 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00Z | 2021 | February | Thursday | 138 | 3.450000 |
2021-02-26T00:00:00Z | 2021 | February | Friday | 78 | 2.437500 |
2021-02-27T00:00:00Z | 2021 | February | Saturday | 93 | 2.162791 |
2021-02-28T00:00:00Z | 2021 | February | Sunday | 46 | 1.533333 |
2021-03-01T00:00:00Z | 2021 | March | Monday | 53 | 1.766667 |
2021-03-02T00:00:00Z | 2021 | March | Tuesday | 72 | 2.400000 |
2021-03-03T00:00:00Z | 2021 | March | Wednesday | 122 | 4.066667 |
2021-03-04T00:00:00Z | 2021 | March | Thursday | 168 | 4.941176 |
2021-03-05T00:00:00Z | 2021 | March | Friday | 74 | 2.387097 |
2021-03-06T00:00:00Z | 2021 | March | Saturday | 43 | 1.482759 |
2021-03-07T00:00:00Z | 2021 | March | Sunday | 43 | 1.720000 |
2021-03-08T00:00:00Z | 2021 | March | Monday | 106 | 3.312500 |
2021-03-09T00:00:00Z | 2021 | March | Tuesday | 114 | 3.081081 |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 83 | 2.593750 |
2021-03-11T00:00:00Z | 2021 | March | Thursday | 109 | 2.725000 |
2021-03-12T00:00:00Z | 2021 | March | Friday | 75 | 2.027027 |
2021-03-13T00:00:00Z | 2021 | March | Saturday | 158 | 4.647059 |
2021-03-14T00:00:00Z | 2021 | March | Sunday | 73 | 2.433333 |
2021-03-15T00:00:00Z | 2021 | March | Monday | 73 | 2.517241 |
2021-03-16T00:00:00Z | 2021 | March | Tuesday | 52 | 1.575758 |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 64 | 2.064516 |
2021-03-18T00:00:00Z | 2021 | March | Thursday | 65 | 2.096774 |
2021-03-19T00:00:00Z | 2021 | March | Friday | 182 | 3.500000 |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 121 | 2.880952 |
2021-03-21T00:00:00Z | 2021 | March | Sunday | 157 | 3.925000 |
2021-03-22T00:00:00Z | 2021 | March | Monday | 94 | 2.410256 |
2021-03-23T00:00:00Z | 2021 | March | Tuesday | 34 | 1.416667 |
2021-03-24T00:00:00Z | 2021 | March | Wednesday | 51 | 1.888889 |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 120 | 2.857143 |
2021-03-26T00:00:00Z | 2021 | March | Friday | 122 | 3.485714 |
# substring replacement
voice[,1] = gsub("\\+.*", 'Z', voice[,1])
# individual extraction
year = factor(year(as.POSIXlt(voice[,1])))
month = factor(months(as.POSIXlt(voice[,1])),levels = month.name)
day = weekdays(as.POSIXlt(voice[,1]))
# appending new indivually extracted dates
voices = cbind(voice, year, month,day)
voices = voices[,c(1,3,4,5,2)]
voices
interval_start_timestamp | year | month | day | speaking_minutes |
---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> |
2019-03-29T00:00:00Z | 2019 | March | Friday | 0 |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 0 |
2019-03-31T00:00:00Z | 2019 | March | Sunday | 0 |
2019-04-01T00:00:00Z | 2019 | April | Monday | 0 |
2019-04-02T00:00:00Z | 2019 | April | Tuesday | 0 |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 0 |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 0 |
2019-04-05T00:00:00Z | 2019 | April | Friday | 0 |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 0 |
2019-04-07T00:00:00Z | 2019 | April | Sunday | 0 |
2019-04-08T00:00:00Z | 2019 | April | Monday | 0 |
2019-04-09T00:00:00Z | 2019 | April | Tuesday | 0 |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 0 |
2019-04-11T00:00:00Z | 2019 | April | Thursday | 0 |
2019-04-12T00:00:00Z | 2019 | April | Friday | 0 |
2019-04-13T00:00:00Z | 2019 | April | Saturday | 0 |
2019-04-14T00:00:00Z | 2019 | April | Sunday | 0 |
2019-04-15T00:00:00Z | 2019 | April | Monday | 0 |
2019-04-16T00:00:00Z | 2019 | April | Tuesday | 0 |
2019-04-17T00:00:00Z | 2019 | April | Wednesday | 0 |
2019-04-18T00:00:00Z | 2019 | April | Thursday | 0 |
2019-04-19T00:00:00Z | 2019 | April | Friday | 0 |
2019-04-20T00:00:00Z | 2019 | April | Saturday | 0 |
2019-04-21T00:00:00Z | 2019 | April | Sunday | 0 |
2019-04-22T00:00:00Z | 2019 | April | Monday | 0 |
2019-04-23T00:00:00Z | 2019 | April | Tuesday | 0 |
2019-04-24T00:00:00Z | 2019 | April | Wednesday | 0 |
2019-04-25T00:00:00Z | 2019 | April | Thursday | 0 |
2019-04-26T00:00:00Z | 2019 | April | Friday | 0 |
2019-04-27T00:00:00Z | 2019 | April | Saturday | 0 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00Z | 2021 | February | Thursday | 1495 |
2021-02-26T00:00:00Z | 2021 | February | Friday | 913 |
2021-02-27T00:00:00Z | 2021 | February | Saturday | 1118 |
2021-02-28T00:00:00Z | 2021 | February | Sunday | 1354 |
2021-03-01T00:00:00Z | 2021 | March | Monday | 1269 |
2021-03-02T00:00:00Z | 2021 | March | Tuesday | 1200 |
2021-03-03T00:00:00Z | 2021 | March | Wednesday | 2031 |
2021-03-04T00:00:00Z | 2021 | March | Thursday | 2293 |
2021-03-05T00:00:00Z | 2021 | March | Friday | 1124 |
2021-03-06T00:00:00Z | 2021 | March | Saturday | 1398 |
2021-03-07T00:00:00Z | 2021 | March | Sunday | 1460 |
2021-03-08T00:00:00Z | 2021 | March | Monday | 1834 |
2021-03-09T00:00:00Z | 2021 | March | Tuesday | 1523 |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 1119 |
2021-03-11T00:00:00Z | 2021 | March | Thursday | 1878 |
2021-03-12T00:00:00Z | 2021 | March | Friday | 1429 |
2021-03-13T00:00:00Z | 2021 | March | Saturday | 730 |
2021-03-14T00:00:00Z | 2021 | March | Sunday | 567 |
2021-03-15T00:00:00Z | 2021 | March | Monday | 1282 |
2021-03-16T00:00:00Z | 2021 | March | Tuesday | 1234 |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 1146 |
2021-03-18T00:00:00Z | 2021 | March | Thursday | 2464 |
2021-03-19T00:00:00Z | 2021 | March | Friday | 840 |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 428 |
2021-03-21T00:00:00Z | 2021 | March | Sunday | 880 |
2021-03-22T00:00:00Z | 2021 | March | Monday | 1598 |
2021-03-23T00:00:00Z | 2021 | March | Tuesday | 873 |
2021-03-24T00:00:00Z | 2021 | March | Wednesday | 771 |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 1742 |
2021-03-26T00:00:00Z | 2021 | March | Friday | 1038 |
# substring replacement
communicator[,1] = gsub("\\+.*", 'Z', communicator[,1])
# individual extraction
year = factor(year(as.POSIXlt(communicator[,1])))
month = factor(months(as.POSIXlt(communicator[,1])),levels = month.name)
day = weekdays(as.POSIXlt(communicator[,1]))
communicator
# appending new individually extracted dates
communicators = cbind(communicator, year, month,day)
communicators = communicators[,c(1,4,5,6,2,3)]
communicators$total_communicated = communicators$visitors * communicators$pct_communicated/100
interval_start_timestamp | visitors | pct_communicated |
---|---|---|
<chr> | <int> | <dbl> |
2019-03-29T00:00:00Z | 206 | 25.72816 |
2019-03-30T00:00:00Z | 184 | 20.65217 |
2019-03-31T00:00:00Z | 185 | 24.32432 |
2019-04-01T00:00:00Z | 328 | 22.86585 |
2019-04-02T00:00:00Z | 143 | 33.56643 |
2019-04-03T00:00:00Z | 271 | 16.60517 |
2019-04-04T00:00:00Z | 381 | 13.38583 |
2019-04-05T00:00:00Z | 190 | 24.73684 |
2019-04-06T00:00:00Z | 163 | 26.99387 |
2019-04-07T00:00:00Z | 159 | 31.44654 |
2019-04-08T00:00:00Z | 163 | 25.76687 |
2019-04-09T00:00:00Z | 148 | 31.08108 |
2019-04-10T00:00:00Z | 163 | 30.67485 |
2019-04-11T00:00:00Z | 139 | 38.12950 |
2019-04-12T00:00:00Z | 155 | 29.67742 |
2019-04-13T00:00:00Z | 143 | 30.06993 |
2019-04-14T00:00:00Z | 140 | 28.57143 |
2019-04-15T00:00:00Z | 170 | 29.41176 |
2019-04-16T00:00:00Z | 150 | 40.66667 |
2019-04-17T00:00:00Z | 153 | 34.64052 |
2019-04-18T00:00:00Z | 167 | 43.71257 |
2019-04-19T00:00:00Z | 162 | 33.95062 |
2019-04-20T00:00:00Z | 337 | 15.13353 |
2019-04-21T00:00:00Z | 172 | 25.00000 |
2019-04-22T00:00:00Z | 162 | 24.07407 |
2019-04-23T00:00:00Z | 163 | 35.58282 |
2019-04-24T00:00:00Z | 340 | 15.29412 |
2019-04-25T00:00:00Z | 196 | 26.53061 |
2019-04-26T00:00:00Z | 371 | 16.98113 |
2019-04-27T00:00:00Z | 201 | 27.86070 |
⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00Z | 172 | 23.255814 |
2021-02-26T00:00:00Z | 167 | 19.161677 |
2021-02-27T00:00:00Z | 208 | 20.673077 |
2021-02-28T00:00:00Z | 167 | 17.964072 |
2021-03-01T00:00:00Z | 164 | 18.292683 |
2021-03-02T00:00:00Z | 199 | 15.075377 |
2021-03-03T00:00:00Z | 163 | 18.404908 |
2021-03-04T00:00:00Z | 163 | 20.858896 |
2021-03-05T00:00:00Z | 179 | 17.318436 |
2021-03-06T00:00:00Z | 304 | 9.539474 |
2021-03-07T00:00:00Z | 162 | 15.432099 |
2021-03-08T00:00:00Z | 234 | 13.675214 |
2021-03-09T00:00:00Z | 160 | 23.125000 |
2021-03-10T00:00:00Z | 156 | 20.512821 |
2021-03-11T00:00:00Z | 553 | 7.233273 |
2021-03-12T00:00:00Z | 253 | 14.624506 |
2021-03-13T00:00:00Z | 237 | 14.345992 |
2021-03-14T00:00:00Z | 147 | 20.408163 |
2021-03-15T00:00:00Z | 154 | 18.831169 |
2021-03-16T00:00:00Z | 154 | 21.428571 |
2021-03-17T00:00:00Z | 141 | 21.985816 |
2021-03-18T00:00:00Z | 153 | 20.261438 |
2021-03-19T00:00:00Z | 268 | 19.402985 |
2021-03-20T00:00:00Z | 658 | 6.382979 |
2021-03-21T00:00:00Z | 170 | 23.529412 |
2021-03-22T00:00:00Z | 174 | 22.413793 |
2021-03-23T00:00:00Z | 143 | 16.783217 |
2021-03-24T00:00:00Z | 157 | 17.197452 |
2021-03-25T00:00:00Z | 165 | 25.454545 |
2021-03-26T00:00:00Z | 573 | 6.108202 |
The following modifications are my attempts to identify covid years for our analysis, I could edit the csv, but I decided to explore R to practice etl for larger datasets. The Fall 2017 STAT 200 course page on Regression With Factor Variables was particularly helpful as a reference when I was trying to have R use Covid
as the default factor instead of Normal
, having Covid
as the default factor will be important when I generate the linear models and interpret the outputs. I would also recommend reading the berkley stats page on "Factors in R" to get a deeper understanding of how to convert factors with dates
I could have applied the relevel()
to the as.factor
line as seen in this stack overflow answer How to force R to use a specified factor level as reference in a regression?, but I realized it was much easier to read/run the code in my head line by line than to pass into multiple functions
# marking covid and non covid months
joins$year_type = as.double(joins$year)
joins$year_type[joins$year_type == 1 ] <- "Normal"
joins$year_type[joins$year_type == 2] <- "Covid"
joins$year_type[joins$year_type == 3] <- "Covid"
joins$year_type = as.factor(joins$year_type)
joins$year_type = relevel(joins$year_type, ref = 2)
head(joins)
leaves$year_type = as.double(leaves$year)
leaves$year_type[leaves$year_type == 1 ] <- "Normal"
leaves$year_type[leaves$year_type ==2] <- "Covid"
leaves$year_type[leaves$year_type ==3] <- "Covid"
leaves$year_type = as.factor(leaves$year_type)
leaves$year_type = relevel(leaves$year_type, ref = 2)
head(leaves)
sources$year_type = as.double(sources$year)
sources$year_type[sources$year_type == 1 ] <- "Normal"
sources$year_type[sources$year_type ==2] <- "Covid"
sources$year_type[sources$year_type ==3] <- "Covid"
sources$year_type = as.factor(sources$year_type)
sources$year_type = relevel(sources$year_type, ref = 2)
head(sources)
messages$year_type = as.double(messages$year)
messages$year_type[messages$year_type == 1 ] <- "Normal"
messages$year_type[messages$year_type ==2] <- "Covid"
messages$year_type[messages$year_type ==3] <- "Covid"
messages$year_type = as.factor(messages$year_type)
messages$year_type = relevel(messages$year_type, ref = 2)
head(messages)
voices$year_type = as.double(voices$year)
voices$year_type[voices$year_type == 1 ] <- "Normal"
voices$year_type[voices$year_type ==2] <- "Covid"
voices$year_type[voices$year_type ==3] <- "Covid"
voices$year_type = as.factor(voices$year_type)
voices$year_type = relevel(voices$year_type, ref = 2)
head(voices)
communicators$year_type = as.double(communicators$year)
communicators$year_type[communicators$year_type == 1 ] <- "Normal"
communicators$year_type[communicators$year_type ==2] <- "Covid"
communicators$year_type[communicators$year_type ==3] <- "Covid"
communicators$year_type = as.factor(communicators$year_type)
communicators$year_type = relevel(communicators$year_type, ref = 2)
head(communicators)
interval_start_timestamp | year | month | day | new_members | pct_communicated | pct_opened_channels | year_type | |
---|---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> | <fct> | |
1 | 2019-03-29T00:00:00Z | 2019 | March | Friday | 2 | 50.00000 | 50.00000 | Normal |
2 | 2019-03-30T00:00:00Z | 2019 | March | Saturday | 6 | 16.66667 | 33.33333 | Normal |
3 | 2019-03-31T00:00:00Z | 2019 | March | Sunday | 8 | 25.00000 | 37.50000 | Normal |
4 | 2019-04-01T00:00:00Z | 2019 | April | Monday | 9 | 44.44444 | 33.33333 | Normal |
5 | 2019-04-02T00:00:00Z | 2019 | April | Tuesday | 2 | 50.00000 | 100.00000 | Normal |
6 | 2019-04-03T00:00:00Z | 2019 | April | Wednesday | 0 | NA | NA | Normal |
interval_start_timestamp | year | month | day | days_in_guild | leavers | year_type | |
---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <fct> | <int> | <fct> | |
1 | 2019-03-29T00:00:00Z | 2019 | March | Friday | 'Members for 1 month+' | 1 | Normal |
2 | 2019-03-30T00:00:00Z | 2019 | March | Saturday | 'Members for 1 month+' | 1 | Normal |
3 | 2019-03-30T00:00:00Z | 2019 | March | Saturday | 'Members for < 1 month' | 1 | Normal |
4 | 2019-03-31T00:00:00Z | 2019 | March | Sunday | 'Members for 1 month+' | 2 | Normal |
5 | 2019-03-31T00:00:00Z | 2019 | March | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 1 | Normal |
6 | 2019-04-01T00:00:00Z | 2019 | April | Monday | 'Members for 1 month+' | 4 | Normal |
interval_start_timestamp | year | month | day | discovery_joins | invites | vanity_joins | year_type | |
---|---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <int> | <int> | <fct> | |
1 | 2019-03-29T00:00:00Z | 2019 | March | Friday | 0 | 0 | 3 | Normal |
2 | 2019-03-30T00:00:00Z | 2019 | March | Saturday | 0 | 0 | 7 | Normal |
3 | 2019-03-31T00:00:00Z | 2019 | March | Sunday | 0 | 0 | 8 | Normal |
4 | 2019-04-01T00:00:00Z | 2019 | April | Monday | 0 | 0 | 11 | Normal |
5 | 2019-04-02T00:00:00Z | 2019 | April | Tuesday | 0 | 0 | 2 | Normal |
6 | 2019-04-03T00:00:00Z | 2019 | April | Wednesday | 0 | 0 | 1 | Normal |
interval_start_timestamp | year | month | day | messages | messages_per_communicator | year_type | |
---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <fct> | |
1 | 2019-03-29T00:00:00Z | 2019 | March | Friday | 334 | 6.301887 | Normal |
2 | 2019-03-30T00:00:00Z | 2019 | March | Saturday | 236 | 6.210526 | Normal |
3 | 2019-03-31T00:00:00Z | 2019 | March | Sunday | 364 | 8.088889 | Normal |
4 | 2019-04-01T00:00:00Z | 2019 | April | Monday | 404 | 5.386667 | Normal |
5 | 2019-04-02T00:00:00Z | 2019 | April | Tuesday | 543 | 11.312500 | Normal |
6 | 2019-04-03T00:00:00Z | 2019 | April | Wednesday | 324 | 7.200000 | Normal |
interval_start_timestamp | year | month | day | speaking_minutes | year_type | |
---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <fct> | |
1 | 2019-03-29T00:00:00Z | 2019 | March | Friday | 0 | Normal |
2 | 2019-03-30T00:00:00Z | 2019 | March | Saturday | 0 | Normal |
3 | 2019-03-31T00:00:00Z | 2019 | March | Sunday | 0 | Normal |
4 | 2019-04-01T00:00:00Z | 2019 | April | Monday | 0 | Normal |
5 | 2019-04-02T00:00:00Z | 2019 | April | Tuesday | 0 | Normal |
6 | 2019-04-03T00:00:00Z | 2019 | April | Wednesday | 0 | Normal |
interval_start_timestamp | year | month | day | visitors | pct_communicated | total_communicated | year_type | |
---|---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> | <fct> | |
1 | 2019-03-29T00:00:00Z | 2019 | March | Friday | 206 | 25.72816 | 53 | Normal |
2 | 2019-03-30T00:00:00Z | 2019 | March | Saturday | 184 | 20.65217 | 38 | Normal |
3 | 2019-03-31T00:00:00Z | 2019 | March | Sunday | 185 | 24.32432 | 45 | Normal |
4 | 2019-04-01T00:00:00Z | 2019 | April | Monday | 328 | 22.86585 | 75 | Normal |
5 | 2019-04-02T00:00:00Z | 2019 | April | Tuesday | 143 | 33.56643 | 48 | Normal |
6 | 2019-04-03T00:00:00Z | 2019 | April | Wednesday | 271 | 16.60517 | 45 | Normal |
head(joins)
head(leaves)
head(sources)
head(messages)
head(voices)
head(communicators)
interval_start_timestamp | year | month | day | new_members | pct_communicated | pct_opened_channels | year_type | |
---|---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> | <fct> | |
1 | 2019-03-29T00:00:00Z | 2019 | March | Friday | 2 | 50.00000 | 50.00000 | Normal |
2 | 2019-03-30T00:00:00Z | 2019 | March | Saturday | 6 | 16.66667 | 33.33333 | Normal |
3 | 2019-03-31T00:00:00Z | 2019 | March | Sunday | 8 | 25.00000 | 37.50000 | Normal |
4 | 2019-04-01T00:00:00Z | 2019 | April | Monday | 9 | 44.44444 | 33.33333 | Normal |
5 | 2019-04-02T00:00:00Z | 2019 | April | Tuesday | 2 | 50.00000 | 100.00000 | Normal |
6 | 2019-04-03T00:00:00Z | 2019 | April | Wednesday | 0 | NA | NA | Normal |
interval_start_timestamp | year | month | day | days_in_guild | leavers | year_type | |
---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <fct> | <int> | <fct> | |
1 | 2019-03-29T00:00:00Z | 2019 | March | Friday | 'Members for 1 month+' | 1 | Normal |
2 | 2019-03-30T00:00:00Z | 2019 | March | Saturday | 'Members for 1 month+' | 1 | Normal |
3 | 2019-03-30T00:00:00Z | 2019 | March | Saturday | 'Members for < 1 month' | 1 | Normal |
4 | 2019-03-31T00:00:00Z | 2019 | March | Sunday | 'Members for 1 month+' | 2 | Normal |
5 | 2019-03-31T00:00:00Z | 2019 | March | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 1 | Normal |
6 | 2019-04-01T00:00:00Z | 2019 | April | Monday | 'Members for 1 month+' | 4 | Normal |
interval_start_timestamp | year | month | day | discovery_joins | invites | vanity_joins | year_type | |
---|---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <int> | <int> | <fct> | |
1 | 2019-03-29T00:00:00Z | 2019 | March | Friday | 0 | 0 | 3 | Normal |
2 | 2019-03-30T00:00:00Z | 2019 | March | Saturday | 0 | 0 | 7 | Normal |
3 | 2019-03-31T00:00:00Z | 2019 | March | Sunday | 0 | 0 | 8 | Normal |
4 | 2019-04-01T00:00:00Z | 2019 | April | Monday | 0 | 0 | 11 | Normal |
5 | 2019-04-02T00:00:00Z | 2019 | April | Tuesday | 0 | 0 | 2 | Normal |
6 | 2019-04-03T00:00:00Z | 2019 | April | Wednesday | 0 | 0 | 1 | Normal |
interval_start_timestamp | year | month | day | messages | messages_per_communicator | year_type | |
---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <fct> | |
1 | 2019-03-29T00:00:00Z | 2019 | March | Friday | 334 | 6.301887 | Normal |
2 | 2019-03-30T00:00:00Z | 2019 | March | Saturday | 236 | 6.210526 | Normal |
3 | 2019-03-31T00:00:00Z | 2019 | March | Sunday | 364 | 8.088889 | Normal |
4 | 2019-04-01T00:00:00Z | 2019 | April | Monday | 404 | 5.386667 | Normal |
5 | 2019-04-02T00:00:00Z | 2019 | April | Tuesday | 543 | 11.312500 | Normal |
6 | 2019-04-03T00:00:00Z | 2019 | April | Wednesday | 324 | 7.200000 | Normal |
interval_start_timestamp | year | month | day | speaking_minutes | year_type | |
---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <fct> | |
1 | 2019-03-29T00:00:00Z | 2019 | March | Friday | 0 | Normal |
2 | 2019-03-30T00:00:00Z | 2019 | March | Saturday | 0 | Normal |
3 | 2019-03-31T00:00:00Z | 2019 | March | Sunday | 0 | Normal |
4 | 2019-04-01T00:00:00Z | 2019 | April | Monday | 0 | Normal |
5 | 2019-04-02T00:00:00Z | 2019 | April | Tuesday | 0 | Normal |
6 | 2019-04-03T00:00:00Z | 2019 | April | Wednesday | 0 | Normal |
interval_start_timestamp | year | month | day | visitors | pct_communicated | total_communicated | year_type | |
---|---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> | <fct> | |
1 | 2019-03-29T00:00:00Z | 2019 | March | Friday | 206 | 25.72816 | 53 | Normal |
2 | 2019-03-30T00:00:00Z | 2019 | March | Saturday | 184 | 20.65217 | 38 | Normal |
3 | 2019-03-31T00:00:00Z | 2019 | March | Sunday | 185 | 24.32432 | 45 | Normal |
4 | 2019-04-01T00:00:00Z | 2019 | April | Monday | 328 | 22.86585 | 75 | Normal |
5 | 2019-04-02T00:00:00Z | 2019 | April | Tuesday | 143 | 33.56643 | 48 | Normal |
6 | 2019-04-03T00:00:00Z | 2019 | April | Wednesday | 271 | 16.60517 | 45 | Normal |
head(text)
head(voice)
interval_start_timestamp | channel_name | channel_id | readers | chatters | messages | |
---|---|---|---|---|---|---|
<fct> | <fct> | <dbl> | <int> | <int> | <int> | |
1 | 2021-03-27T00:00:00+00:00 | general | 2.124359e+17 | 218 | 51 | 264 |
2 | 2021-03-27T00:00:00+00:00 | hearthstone | 2.124361e+17 | 3 | 0 | 0 |
3 | 2021-03-27T00:00:00+00:00 | overwatch | 2.124362e+17 | 98 | 38 | 794 |
4 | 2021-03-27T00:00:00+00:00 | lol | 2.124362e+17 | 97 | 31 | 181 |
5 | 2021-03-27T00:00:00+00:00 | csgo | 2.124363e+17 | 29 | 4 | 5 |
6 | 2021-03-27T00:00:00+00:00 | dota2 | 2.124364e+17 | 17 | 5 | 11 |
interval_start_timestamp | speaking_minutes | |
---|---|---|
<chr> | <int> | |
1 | 2019-03-29T00:00:00Z | 0 |
2 | 2019-03-30T00:00:00Z | 0 |
3 | 2019-03-31T00:00:00Z | 0 |
4 | 2019-04-01T00:00:00Z | 0 |
5 | 2019-04-02T00:00:00Z | 0 |
6 | 2019-04-03T00:00:00Z | 0 |
Originally I planned on aggregating by the year for my bar charts, but when I read through some more examples of aggregates, I found a better method in "Aggregating by category"
joins.2019 = subset(joins, year == 2019)
joins.2020 = subset(joins, year == 2020)
joins.2021 = subset(joins, year == 2021)
leaves.2019 = subset(leaves, year == 2019)
leaves.2020 = subset(leaves, year == 2020)
leaves.2021 = subset(leaves, year == 2021)
sources.2019 = subset(sources, year == 2019)
sources.2020 = subset(sources, year == 2020)
sources.2021 = subset(sources, year == 2021)
comm.2019 = subset(communicators, year == 2019)
comm.2020 = subset(communicators, year == 2020)
comm.2021 = subset(communicators, year == 2021)
joins.2019
leaves.2019
sources.2019
comm.2019
interval_start_timestamp | year | month | day | new_members | pct_communicated | pct_opened_channels | year_type | |
---|---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> | <fct> | |
1 | 2019-03-29T00:00:00Z | 2019 | March | Friday | 2 | 50.00000 | 50.00000 | Normal |
2 | 2019-03-30T00:00:00Z | 2019 | March | Saturday | 6 | 16.66667 | 33.33333 | Normal |
3 | 2019-03-31T00:00:00Z | 2019 | March | Sunday | 8 | 25.00000 | 37.50000 | Normal |
4 | 2019-04-01T00:00:00Z | 2019 | April | Monday | 9 | 44.44444 | 33.33333 | Normal |
5 | 2019-04-02T00:00:00Z | 2019 | April | Tuesday | 2 | 50.00000 | 100.00000 | Normal |
6 | 2019-04-03T00:00:00Z | 2019 | April | Wednesday | 0 | NA | NA | Normal |
7 | 2019-04-04T00:00:00Z | 2019 | April | Thursday | 2 | 100.00000 | 100.00000 | Normal |
8 | 2019-04-05T00:00:00Z | 2019 | April | Friday | 3 | 33.33333 | 0.00000 | Normal |
9 | 2019-04-06T00:00:00Z | 2019 | April | Saturday | 2 | 0.00000 | 0.00000 | Normal |
10 | 2019-04-07T00:00:00Z | 2019 | April | Sunday | 2 | 0.00000 | 0.00000 | Normal |
11 | 2019-04-08T00:00:00Z | 2019 | April | Monday | 9 | 33.33333 | 33.33333 | Normal |
12 | 2019-04-09T00:00:00Z | 2019 | April | Tuesday | 3 | 33.33333 | 33.33333 | Normal |
13 | 2019-04-10T00:00:00Z | 2019 | April | Wednesday | 1 | 100.00000 | 100.00000 | Normal |
14 | 2019-04-11T00:00:00Z | 2019 | April | Thursday | 1 | 0.00000 | 100.00000 | Normal |
15 | 2019-04-12T00:00:00Z | 2019 | April | Friday | 1 | 0.00000 | 100.00000 | Normal |
16 | 2019-04-13T00:00:00Z | 2019 | April | Saturday | 1 | 0.00000 | 100.00000 | Normal |
17 | 2019-04-14T00:00:00Z | 2019 | April | Sunday | 0 | NA | NA | Normal |
18 | 2019-04-15T00:00:00Z | 2019 | April | Monday | 0 | NA | NA | Normal |
19 | 2019-04-16T00:00:00Z | 2019 | April | Tuesday | 3 | 66.66667 | 0.00000 | Normal |
20 | 2019-04-17T00:00:00Z | 2019 | April | Wednesday | 5 | 0.00000 | 20.00000 | Normal |
21 | 2019-04-18T00:00:00Z | 2019 | April | Thursday | 3 | 100.00000 | 33.33333 | Normal |
22 | 2019-04-19T00:00:00Z | 2019 | April | Friday | 3 | 0.00000 | 33.33333 | Normal |
23 | 2019-04-20T00:00:00Z | 2019 | April | Saturday | 0 | NA | NA | Normal |
24 | 2019-04-21T00:00:00Z | 2019 | April | Sunday | 1 | 100.00000 | 100.00000 | Normal |
25 | 2019-04-22T00:00:00Z | 2019 | April | Monday | 0 | NA | NA | Normal |
26 | 2019-04-23T00:00:00Z | 2019 | April | Tuesday | 1 | 0.00000 | 0.00000 | Normal |
27 | 2019-04-24T00:00:00Z | 2019 | April | Wednesday | 3 | 33.33333 | 0.00000 | Normal |
28 | 2019-04-25T00:00:00Z | 2019 | April | Thursday | 3 | 66.66667 | 66.66667 | Normal |
29 | 2019-04-26T00:00:00Z | 2019 | April | Friday | 3 | 33.33333 | 33.33333 | Normal |
30 | 2019-04-27T00:00:00Z | 2019 | April | Saturday | 1 | 100.00000 | 0.00000 | Normal |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
249 | 2019-12-02T00:00:00Z | 2019 | December | Monday | 2 | 0.00000 | 0.00000 | Normal |
250 | 2019-12-03T00:00:00Z | 2019 | December | Tuesday | 2 | 0.00000 | 50.00000 | Normal |
251 | 2019-12-04T00:00:00Z | 2019 | December | Wednesday | 3 | 33.33333 | 66.66667 | Normal |
252 | 2019-12-05T00:00:00Z | 2019 | December | Thursday | 5 | 0.00000 | 20.00000 | Normal |
253 | 2019-12-06T00:00:00Z | 2019 | December | Friday | 2 | 50.00000 | 50.00000 | Normal |
254 | 2019-12-07T00:00:00Z | 2019 | December | Saturday | 1 | 100.00000 | 0.00000 | Normal |
255 | 2019-12-08T00:00:00Z | 2019 | December | Sunday | 3 | 33.33333 | 33.33333 | Normal |
256 | 2019-12-09T00:00:00Z | 2019 | December | Monday | 2 | 50.00000 | 50.00000 | Normal |
257 | 2019-12-10T00:00:00Z | 2019 | December | Tuesday | 1 | 0.00000 | 100.00000 | Normal |
258 | 2019-12-11T00:00:00Z | 2019 | December | Wednesday | 3 | 66.66667 | 100.00000 | Normal |
259 | 2019-12-12T00:00:00Z | 2019 | December | Thursday | 1 | 0.00000 | 0.00000 | Normal |
260 | 2019-12-13T00:00:00Z | 2019 | December | Friday | 0 | NA | NA | Normal |
261 | 2019-12-14T00:00:00Z | 2019 | December | Saturday | 1 | 0.00000 | 100.00000 | Normal |
262 | 2019-12-15T00:00:00Z | 2019 | December | Sunday | 1 | 100.00000 | 0.00000 | Normal |
263 | 2019-12-16T00:00:00Z | 2019 | December | Monday | 1 | 0.00000 | 100.00000 | Normal |
264 | 2019-12-17T00:00:00Z | 2019 | December | Tuesday | 1 | 0.00000 | 100.00000 | Normal |
265 | 2019-12-18T00:00:00Z | 2019 | December | Wednesday | 6 | 0.00000 | 50.00000 | Normal |
266 | 2019-12-19T00:00:00Z | 2019 | December | Thursday | 1 | 0.00000 | 0.00000 | Normal |
267 | 2019-12-20T00:00:00Z | 2019 | December | Friday | 0 | NA | NA | Normal |
268 | 2019-12-21T00:00:00Z | 2019 | December | Saturday | 2 | 50.00000 | 50.00000 | Normal |
269 | 2019-12-22T00:00:00Z | 2019 | December | Sunday | 0 | NA | NA | Normal |
270 | 2019-12-23T00:00:00Z | 2019 | December | Monday | 0 | NA | NA | Normal |
271 | 2019-12-24T00:00:00Z | 2019 | December | Tuesday | 0 | NA | NA | Normal |
272 | 2019-12-25T00:00:00Z | 2019 | December | Wednesday | 1 | 0.00000 | 0.00000 | Normal |
273 | 2019-12-26T00:00:00Z | 2019 | December | Thursday | 0 | NA | NA | Normal |
274 | 2019-12-27T00:00:00Z | 2019 | December | Friday | 1 | 0.00000 | 0.00000 | Normal |
275 | 2019-12-28T00:00:00Z | 2019 | December | Saturday | 1 | 100.00000 | 0.00000 | Normal |
276 | 2019-12-29T00:00:00Z | 2019 | December | Sunday | 1 | 0.00000 | 0.00000 | Normal |
277 | 2019-12-30T00:00:00Z | 2019 | December | Monday | 0 | NA | NA | Normal |
278 | 2019-12-31T00:00:00Z | 2019 | December | Tuesday | 0 | NA | NA | Normal |
interval_start_timestamp | year | month | day | days_in_guild | leavers | year_type | |
---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <fct> | <int> | <fct> | |
1 | 2019-03-29T00:00:00Z | 2019 | March | Friday | 'Members for 1 month+' | 1 | Normal |
2 | 2019-03-30T00:00:00Z | 2019 | March | Saturday | 'Members for 1 month+' | 1 | Normal |
3 | 2019-03-30T00:00:00Z | 2019 | March | Saturday | 'Members for < 1 month' | 1 | Normal |
4 | 2019-03-31T00:00:00Z | 2019 | March | Sunday | 'Members for 1 month+' | 2 | Normal |
5 | 2019-03-31T00:00:00Z | 2019 | March | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 1 | Normal |
6 | 2019-04-01T00:00:00Z | 2019 | April | Monday | 'Members for 1 month+' | 4 | Normal |
7 | 2019-04-02T00:00:00Z | 2019 | April | Tuesday | 'Members for 1 month+' | 1 | Normal |
8 | 2019-04-03T00:00:00Z | 2019 | April | Wednesday | 'Members for 1 month+' | 2 | Normal |
9 | 2019-04-03T00:00:00Z | 2019 | April | Wednesday | 'Members for < 1 month' | 2 | Normal |
10 | 2019-04-04T00:00:00Z | 2019 | April | Thursday | 'Members for 1 month+' | 2 | Normal |
11 | 2019-04-04T00:00:00Z | 2019 | April | Thursday | 'Members for < 1 month' | 2 | Normal |
12 | 2019-04-05T00:00:00Z | 2019 | April | Friday | 'Members for 1 month+' | 3 | Normal |
13 | 2019-04-06T00:00:00Z | 2019 | April | Saturday | 'Members for 1 month+' | 1 | Normal |
14 | 2019-04-06T00:00:00Z | 2019 | April | Saturday | 'Members for < 1 month' | 1 | Normal |
15 | 2019-04-07T00:00:00Z | 2019 | April | Sunday | 'Members for 1 month+' | 1 | Normal |
16 | 2019-04-07T00:00:00Z | 2019 | April | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 2 | Normal |
17 | 2019-04-08T00:00:00Z | 2019 | April | Monday | 'Members for 1 month+' | 1 | Normal |
18 | 2019-04-08T00:00:00Z | 2019 | April | <span style=white-space:pre-wrap>Monday </span> | 'Members for < 1 month' | 1 | Normal |
19 | 2019-04-09T00:00:00Z | 2019 | April | Tuesday | 'Members for 1 month+' | 1 | Normal |
20 | 2019-04-09T00:00:00Z | 2019 | April | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Normal |
21 | 2019-04-10T00:00:00Z | 2019 | April | Wednesday | 'Members for 1 month+' | 2 | Normal |
22 | 2019-04-10T00:00:00Z | 2019 | April | Wednesday | 'Members for < 1 month' | 1 | Normal |
23 | 2019-04-11T00:00:00Z | 2019 | April | Thursday | 'Members for 1 month+' | 0 | Normal |
24 | 2019-04-12T00:00:00Z | 2019 | April | Friday | 'Members for 1 month+' | 1 | Normal |
25 | 2019-04-13T00:00:00Z | 2019 | April | Saturday | 'Members for < 1 month' | 1 | Normal |
26 | 2019-04-14T00:00:00Z | 2019 | April | Sunday | 'Members for 1 month+' | 2 | Normal |
27 | 2019-04-15T00:00:00Z | 2019 | April | Monday | 'Members for 1 month+' | 1 | Normal |
28 | 2019-04-15T00:00:00Z | 2019 | April | <span style=white-space:pre-wrap>Monday </span> | 'Members for < 1 month' | 1 | Normal |
29 | 2019-04-16T00:00:00Z | 2019 | April | Tuesday | 'Members for 1 month+' | 3 | Normal |
30 | 2019-04-16T00:00:00Z | 2019 | April | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Normal |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
372 | 2019-12-06T00:00:00Z | 2019 | December | Friday | 'Members for 1 month+' | 0 | Normal |
373 | 2019-12-07T00:00:00Z | 2019 | December | Saturday | 'Members for 1 month+' | 4 | Normal |
374 | 2019-12-08T00:00:00Z | 2019 | December | Sunday | 'Members for 1 month+' | 4 | Normal |
375 | 2019-12-09T00:00:00Z | 2019 | December | Monday | 'Members for 1 month+' | 0 | Normal |
376 | 2019-12-10T00:00:00Z | 2019 | December | Tuesday | 'Members for 1 month+' | 1 | Normal |
377 | 2019-12-11T00:00:00Z | 2019 | December | Wednesday | 'Members for 1 month+' | 0 | Normal |
378 | 2019-12-12T00:00:00Z | 2019 | December | Thursday | 'Members for 1 month+' | 1 | Normal |
379 | 2019-12-13T00:00:00Z | 2019 | December | Friday | 'Members for 1 month+' | 2 | Normal |
380 | 2019-12-14T00:00:00Z | 2019 | December | Saturday | 'Members for 1 month+' | 0 | Normal |
381 | 2019-12-15T00:00:00Z | 2019 | December | Sunday | 'Members for 1 month+' | 0 | Normal |
382 | 2019-12-16T00:00:00Z | 2019 | December | Monday | 'Members for 1 month+' | 2 | Normal |
383 | 2019-12-16T00:00:00Z | 2019 | December | <span style=white-space:pre-wrap>Monday </span> | 'Members for < 1 month' | 1 | Normal |
384 | 2019-12-17T00:00:00Z | 2019 | December | Tuesday | 'Members for 1 month+' | 3 | Normal |
385 | 2019-12-18T00:00:00Z | 2019 | December | Wednesday | 'Members for 1 month+' | 2 | Normal |
386 | 2019-12-19T00:00:00Z | 2019 | December | Thursday | 'Members for 1 month+' | 1 | Normal |
387 | 2019-12-20T00:00:00Z | 2019 | December | Friday | 'Members for 1 month+' | 0 | Normal |
388 | 2019-12-21T00:00:00Z | 2019 | December | Saturday | 'Members for 1 month+' | 2 | Normal |
389 | 2019-12-21T00:00:00Z | 2019 | December | Saturday | 'Members for < 1 month' | 1 | Normal |
390 | 2019-12-22T00:00:00Z | 2019 | December | Sunday | 'Members for 1 month+' | 1 | Normal |
391 | 2019-12-22T00:00:00Z | 2019 | December | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 1 | Normal |
392 | 2019-12-23T00:00:00Z | 2019 | December | Monday | 'Members for 1 month+' | 1 | Normal |
393 | 2019-12-24T00:00:00Z | 2019 | December | Tuesday | 'Members for 1 month+' | 1 | Normal |
394 | 2019-12-25T00:00:00Z | 2019 | December | Wednesday | 'Members for 1 month+' | 1 | Normal |
395 | 2019-12-26T00:00:00Z | 2019 | December | Thursday | 'Members for 1 month+' | 1 | Normal |
396 | 2019-12-27T00:00:00Z | 2019 | December | Friday | 'Members for 1 month+' | 0 | Normal |
397 | 2019-12-28T00:00:00Z | 2019 | December | Saturday | 'Members for 1 month+' | 0 | Normal |
398 | 2019-12-29T00:00:00Z | 2019 | December | Sunday | 'Members for 1 month+' | 2 | Normal |
399 | 2019-12-29T00:00:00Z | 2019 | December | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 1 | Normal |
400 | 2019-12-30T00:00:00Z | 2019 | December | Monday | 'Members for 1 month+' | 1 | Normal |
401 | 2019-12-31T00:00:00Z | 2019 | December | Tuesday | 'Members for 1 month+' | 2 | Normal |
interval_start_timestamp | year | month | day | discovery_joins | invites | vanity_joins | year_type | |
---|---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <int> | <int> | <fct> | |
1 | 2019-03-29T00:00:00Z | 2019 | March | Friday | 0 | 0 | 3 | Normal |
2 | 2019-03-30T00:00:00Z | 2019 | March | Saturday | 0 | 0 | 7 | Normal |
3 | 2019-03-31T00:00:00Z | 2019 | March | Sunday | 0 | 0 | 8 | Normal |
4 | 2019-04-01T00:00:00Z | 2019 | April | Monday | 0 | 0 | 11 | Normal |
5 | 2019-04-02T00:00:00Z | 2019 | April | Tuesday | 0 | 0 | 2 | Normal |
6 | 2019-04-03T00:00:00Z | 2019 | April | Wednesday | 0 | 0 | 1 | Normal |
7 | 2019-04-04T00:00:00Z | 2019 | April | Thursday | 0 | 0 | 3 | Normal |
8 | 2019-04-05T00:00:00Z | 2019 | April | Friday | 0 | 0 | 4 | Normal |
9 | 2019-04-06T00:00:00Z | 2019 | April | Saturday | 0 | 0 | 3 | Normal |
10 | 2019-04-07T00:00:00Z | 2019 | April | Sunday | 0 | 0 | 2 | Normal |
11 | 2019-04-08T00:00:00Z | 2019 | April | Monday | 0 | 0 | 9 | Normal |
12 | 2019-04-09T00:00:00Z | 2019 | April | Tuesday | 0 | 0 | 3 | Normal |
13 | 2019-04-10T00:00:00Z | 2019 | April | Wednesday | 0 | 0 | 1 | Normal |
14 | 2019-04-11T00:00:00Z | 2019 | April | Thursday | 0 | 0 | 2 | Normal |
15 | 2019-04-12T00:00:00Z | 2019 | April | Friday | 0 | 0 | 1 | Normal |
16 | 2019-04-13T00:00:00Z | 2019 | April | Saturday | 0 | 0 | 1 | Normal |
17 | 2019-04-14T00:00:00Z | 2019 | April | Sunday | 0 | 0 | 0 | Normal |
18 | 2019-04-15T00:00:00Z | 2019 | April | Monday | 0 | 0 | 0 | Normal |
19 | 2019-04-16T00:00:00Z | 2019 | April | Tuesday | 0 | 0 | 7 | Normal |
20 | 2019-04-17T00:00:00Z | 2019 | April | Wednesday | 0 | 0 | 5 | Normal |
21 | 2019-04-18T00:00:00Z | 2019 | April | Thursday | 0 | 0 | 6 | Normal |
22 | 2019-04-19T00:00:00Z | 2019 | April | Friday | 0 | 0 | 3 | Normal |
23 | 2019-04-20T00:00:00Z | 2019 | April | Saturday | 0 | 0 | 2 | Normal |
24 | 2019-04-21T00:00:00Z | 2019 | April | Sunday | 0 | 0 | 1 | Normal |
25 | 2019-04-22T00:00:00Z | 2019 | April | Monday | 0 | 0 | 1 | Normal |
26 | 2019-04-23T00:00:00Z | 2019 | April | Tuesday | 0 | 0 | 3 | Normal |
27 | 2019-04-24T00:00:00Z | 2019 | April | Wednesday | 0 | 0 | 3 | Normal |
28 | 2019-04-25T00:00:00Z | 2019 | April | Thursday | 0 | 0 | 3 | Normal |
29 | 2019-04-26T00:00:00Z | 2019 | April | Friday | 0 | 0 | 4 | Normal |
30 | 2019-04-27T00:00:00Z | 2019 | April | Saturday | 0 | 0 | 3 | Normal |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
249 | 2019-12-02T00:00:00Z | 2019 | December | Monday | 0 | 0 | 2 | Normal |
250 | 2019-12-03T00:00:00Z | 2019 | December | Tuesday | 0 | 0 | 2 | Normal |
251 | 2019-12-04T00:00:00Z | 2019 | December | Wednesday | 0 | 0 | 3 | Normal |
252 | 2019-12-05T00:00:00Z | 2019 | December | Thursday | 0 | 0 | 5 | Normal |
253 | 2019-12-06T00:00:00Z | 2019 | December | Friday | 0 | 0 | 2 | Normal |
254 | 2019-12-07T00:00:00Z | 2019 | December | Saturday | 0 | 0 | 1 | Normal |
255 | 2019-12-08T00:00:00Z | 2019 | December | Sunday | 0 | 0 | 4 | Normal |
256 | 2019-12-09T00:00:00Z | 2019 | December | Monday | 0 | 0 | 2 | Normal |
257 | 2019-12-10T00:00:00Z | 2019 | December | Tuesday | 0 | 0 | 1 | Normal |
258 | 2019-12-11T00:00:00Z | 2019 | December | Wednesday | 0 | 0 | 3 | Normal |
259 | 2019-12-12T00:00:00Z | 2019 | December | Thursday | 0 | 0 | 2 | Normal |
260 | 2019-12-13T00:00:00Z | 2019 | December | Friday | 0 | 0 | 0 | Normal |
261 | 2019-12-14T00:00:00Z | 2019 | December | Saturday | 0 | 0 | 1 | Normal |
262 | 2019-12-15T00:00:00Z | 2019 | December | Sunday | 0 | 0 | 1 | Normal |
263 | 2019-12-16T00:00:00Z | 2019 | December | Monday | 0 | 0 | 1 | Normal |
264 | 2019-12-17T00:00:00Z | 2019 | December | Tuesday | 0 | 0 | 1 | Normal |
265 | 2019-12-18T00:00:00Z | 2019 | December | Wednesday | 0 | 0 | 6 | Normal |
266 | 2019-12-19T00:00:00Z | 2019 | December | Thursday | 0 | 0 | 2 | Normal |
267 | 2019-12-20T00:00:00Z | 2019 | December | Friday | 0 | 0 | 0 | Normal |
268 | 2019-12-21T00:00:00Z | 2019 | December | Saturday | 0 | 0 | 4 | Normal |
269 | 2019-12-22T00:00:00Z | 2019 | December | Sunday | 0 | 0 | 1 | Normal |
270 | 2019-12-23T00:00:00Z | 2019 | December | Monday | 0 | 0 | 0 | Normal |
271 | 2019-12-24T00:00:00Z | 2019 | December | Tuesday | 0 | 0 | 0 | Normal |
272 | 2019-12-25T00:00:00Z | 2019 | December | Wednesday | 0 | 0 | 1 | Normal |
273 | 2019-12-26T00:00:00Z | 2019 | December | Thursday | 0 | 0 | 0 | Normal |
274 | 2019-12-27T00:00:00Z | 2019 | December | Friday | 0 | 0 | 1 | Normal |
275 | 2019-12-28T00:00:00Z | 2019 | December | Saturday | 0 | 0 | 1 | Normal |
276 | 2019-12-29T00:00:00Z | 2019 | December | Sunday | 0 | 0 | 1 | Normal |
277 | 2019-12-30T00:00:00Z | 2019 | December | Monday | 0 | 0 | 0 | Normal |
278 | 2019-12-31T00:00:00Z | 2019 | December | Tuesday | 0 | 0 | 0 | Normal |
interval_start_timestamp | year | month | day | visitors | pct_communicated | total_communicated | year_type | |
---|---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> | <fct> | |
1 | 2019-03-29T00:00:00Z | 2019 | March | Friday | 206 | 25.72816 | 53 | Normal |
2 | 2019-03-30T00:00:00Z | 2019 | March | Saturday | 184 | 20.65217 | 38 | Normal |
3 | 2019-03-31T00:00:00Z | 2019 | March | Sunday | 185 | 24.32432 | 45 | Normal |
4 | 2019-04-01T00:00:00Z | 2019 | April | Monday | 328 | 22.86585 | 75 | Normal |
5 | 2019-04-02T00:00:00Z | 2019 | April | Tuesday | 143 | 33.56643 | 48 | Normal |
6 | 2019-04-03T00:00:00Z | 2019 | April | Wednesday | 271 | 16.60517 | 45 | Normal |
7 | 2019-04-04T00:00:00Z | 2019 | April | Thursday | 381 | 13.38583 | 51 | Normal |
8 | 2019-04-05T00:00:00Z | 2019 | April | Friday | 190 | 24.73684 | 47 | Normal |
9 | 2019-04-06T00:00:00Z | 2019 | April | Saturday | 163 | 26.99387 | 44 | Normal |
10 | 2019-04-07T00:00:00Z | 2019 | April | Sunday | 159 | 31.44654 | 50 | Normal |
11 | 2019-04-08T00:00:00Z | 2019 | April | Monday | 163 | 25.76687 | 42 | Normal |
12 | 2019-04-09T00:00:00Z | 2019 | April | Tuesday | 148 | 31.08108 | 46 | Normal |
13 | 2019-04-10T00:00:00Z | 2019 | April | Wednesday | 163 | 30.67485 | 50 | Normal |
14 | 2019-04-11T00:00:00Z | 2019 | April | Thursday | 139 | 38.12950 | 53 | Normal |
15 | 2019-04-12T00:00:00Z | 2019 | April | Friday | 155 | 29.67742 | 46 | Normal |
16 | 2019-04-13T00:00:00Z | 2019 | April | Saturday | 143 | 30.06993 | 43 | Normal |
17 | 2019-04-14T00:00:00Z | 2019 | April | Sunday | 140 | 28.57143 | 40 | Normal |
18 | 2019-04-15T00:00:00Z | 2019 | April | Monday | 170 | 29.41176 | 50 | Normal |
19 | 2019-04-16T00:00:00Z | 2019 | April | Tuesday | 150 | 40.66667 | 61 | Normal |
20 | 2019-04-17T00:00:00Z | 2019 | April | Wednesday | 153 | 34.64052 | 53 | Normal |
21 | 2019-04-18T00:00:00Z | 2019 | April | Thursday | 167 | 43.71257 | 73 | Normal |
22 | 2019-04-19T00:00:00Z | 2019 | April | Friday | 162 | 33.95062 | 55 | Normal |
23 | 2019-04-20T00:00:00Z | 2019 | April | Saturday | 337 | 15.13353 | 51 | Normal |
24 | 2019-04-21T00:00:00Z | 2019 | April | Sunday | 172 | 25.00000 | 43 | Normal |
25 | 2019-04-22T00:00:00Z | 2019 | April | Monday | 162 | 24.07407 | 39 | Normal |
26 | 2019-04-23T00:00:00Z | 2019 | April | Tuesday | 163 | 35.58282 | 58 | Normal |
27 | 2019-04-24T00:00:00Z | 2019 | April | Wednesday | 340 | 15.29412 | 52 | Normal |
28 | 2019-04-25T00:00:00Z | 2019 | April | Thursday | 196 | 26.53061 | 52 | Normal |
29 | 2019-04-26T00:00:00Z | 2019 | April | Friday | 371 | 16.98113 | 63 | Normal |
30 | 2019-04-27T00:00:00Z | 2019 | April | Saturday | 201 | 27.86070 | 56 | Normal |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
249 | 2019-12-02T00:00:00Z | 2019 | December | Monday | 155 | 30.96774 | 48 | Normal |
250 | 2019-12-03T00:00:00Z | 2019 | December | Tuesday | 170 | 27.05882 | 46 | Normal |
251 | 2019-12-04T00:00:00Z | 2019 | December | Wednesday | 429 | 10.48951 | 45 | Normal |
252 | 2019-12-05T00:00:00Z | 2019 | December | Thursday | 247 | 14.97976 | 37 | Normal |
253 | 2019-12-06T00:00:00Z | 2019 | December | Friday | 432 | 16.43519 | 71 | Normal |
254 | 2019-12-07T00:00:00Z | 2019 | December | Saturday | 443 | 13.31828 | 59 | Normal |
255 | 2019-12-08T00:00:00Z | 2019 | December | Sunday | 432 | 13.65741 | 59 | Normal |
256 | 2019-12-09T00:00:00Z | 2019 | December | Monday | 217 | 22.11982 | 48 | Normal |
257 | 2019-12-10T00:00:00Z | 2019 | December | Tuesday | 166 | 29.51807 | 49 | Normal |
258 | 2019-12-11T00:00:00Z | 2019 | December | Wednesday | 162 | 29.62963 | 48 | Normal |
259 | 2019-12-12T00:00:00Z | 2019 | December | Thursday | 412 | 14.32039 | 59 | Normal |
260 | 2019-12-13T00:00:00Z | 2019 | December | Friday | 177 | 21.46893 | 38 | Normal |
261 | 2019-12-14T00:00:00Z | 2019 | December | Saturday | 188 | 21.27660 | 40 | Normal |
262 | 2019-12-15T00:00:00Z | 2019 | December | Sunday | 169 | 27.81065 | 47 | Normal |
263 | 2019-12-16T00:00:00Z | 2019 | December | Monday | 136 | 28.67647 | 39 | Normal |
264 | 2019-12-17T00:00:00Z | 2019 | December | Tuesday | 133 | 32.33083 | 43 | Normal |
265 | 2019-12-18T00:00:00Z | 2019 | December | Wednesday | 127 | 21.25984 | 27 | Normal |
266 | 2019-12-19T00:00:00Z | 2019 | December | Thursday | 123 | 25.20325 | 31 | Normal |
267 | 2019-12-20T00:00:00Z | 2019 | December | Friday | 144 | 19.44444 | 28 | Normal |
268 | 2019-12-21T00:00:00Z | 2019 | December | Saturday | 125 | 20.80000 | 26 | Normal |
269 | 2019-12-22T00:00:00Z | 2019 | December | Sunday | 117 | 18.80342 | 22 | Normal |
270 | 2019-12-23T00:00:00Z | 2019 | December | Monday | 116 | 24.13793 | 28 | Normal |
271 | 2019-12-24T00:00:00Z | 2019 | December | Tuesday | 108 | 24.07407 | 26 | Normal |
272 | 2019-12-25T00:00:00Z | 2019 | December | Wednesday | 106 | 26.41509 | 28 | Normal |
273 | 2019-12-26T00:00:00Z | 2019 | December | Thursday | 110 | 26.36364 | 29 | Normal |
274 | 2019-12-27T00:00:00Z | 2019 | December | Friday | 96 | 31.25000 | 30 | Normal |
275 | 2019-12-28T00:00:00Z | 2019 | December | Saturday | 91 | 18.68132 | 17 | Normal |
276 | 2019-12-29T00:00:00Z | 2019 | December | Sunday | 90 | 21.11111 | 19 | Normal |
277 | 2019-12-30T00:00:00Z | 2019 | December | Monday | 108 | 25.92593 | 28 | Normal |
278 | 2019-12-31T00:00:00Z | 2019 | December | Tuesday | 100 | 26.00000 | 26 | Normal |
joins.2020
leaves.2020
sources.2020
comm.2020
interval_start_timestamp | year | month | day | new_members | pct_communicated | pct_opened_channels | year_type | |
---|---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> | <fct> | |
279 | 2020-01-01T00:00:00Z | 2020 | January | Wednesday | 0 | NA | NA | Covid |
280 | 2020-01-02T00:00:00Z | 2020 | January | Thursday | 1 | 0.00000 | 100.00000 | Covid |
281 | 2020-01-03T00:00:00Z | 2020 | January | Friday | 2 | 0.00000 | 50.00000 | Covid |
282 | 2020-01-04T00:00:00Z | 2020 | January | Saturday | 0 | NA | NA | Covid |
283 | 2020-01-05T00:00:00Z | 2020 | January | Sunday | 0 | NA | NA | Covid |
284 | 2020-01-06T00:00:00Z | 2020 | January | Monday | 3 | 0.00000 | 0.00000 | Covid |
285 | 2020-01-07T00:00:00Z | 2020 | January | Tuesday | 1 | 0.00000 | 100.00000 | Covid |
286 | 2020-01-08T00:00:00Z | 2020 | January | Wednesday | 2 | 0.00000 | 50.00000 | Covid |
287 | 2020-01-09T00:00:00Z | 2020 | January | Thursday | 3 | 33.33333 | 33.33333 | Covid |
288 | 2020-01-10T00:00:00Z | 2020 | January | Friday | 2 | 0.00000 | 0.00000 | Covid |
289 | 2020-01-11T00:00:00Z | 2020 | January | Saturday | 0 | NA | NA | Covid |
290 | 2020-01-12T00:00:00Z | 2020 | January | Sunday | 2 | 0.00000 | 100.00000 | Covid |
291 | 2020-01-13T00:00:00Z | 2020 | January | Monday | 2 | 100.00000 | 100.00000 | Covid |
292 | 2020-01-14T00:00:00Z | 2020 | January | Tuesday | 7 | 14.28571 | 57.14286 | Covid |
293 | 2020-01-15T00:00:00Z | 2020 | January | Wednesday | 4 | 0.00000 | 25.00000 | Covid |
294 | 2020-01-16T00:00:00Z | 2020 | January | Thursday | 3 | 33.33333 | 100.00000 | Covid |
295 | 2020-01-17T00:00:00Z | 2020 | January | Friday | 1 | 0.00000 | 0.00000 | Covid |
296 | 2020-01-18T00:00:00Z | 2020 | January | Saturday | 3 | 0.00000 | 100.00000 | Covid |
297 | 2020-01-19T00:00:00Z | 2020 | January | Sunday | 2 | 0.00000 | 50.00000 | Covid |
298 | 2020-01-20T00:00:00Z | 2020 | January | Monday | 2 | 50.00000 | 100.00000 | Covid |
299 | 2020-01-21T00:00:00Z | 2020 | January | Tuesday | 4 | 25.00000 | 75.00000 | Covid |
300 | 2020-01-22T00:00:00Z | 2020 | January | Wednesday | 3 | 0.00000 | 0.00000 | Covid |
301 | 2020-01-23T00:00:00Z | 2020 | January | Thursday | 19 | 15.78947 | 21.05263 | Covid |
302 | 2020-01-24T00:00:00Z | 2020 | January | Friday | 0 | NA | NA | Covid |
303 | 2020-01-25T00:00:00Z | 2020 | January | Saturday | 3 | 33.33333 | 33.33333 | Covid |
304 | 2020-01-26T00:00:00Z | 2020 | January | Sunday | 3 | 0.00000 | 100.00000 | Covid |
305 | 2020-01-27T00:00:00Z | 2020 | January | Monday | 3 | 0.00000 | 66.66667 | Covid |
306 | 2020-01-28T00:00:00Z | 2020 | January | Tuesday | 2 | 0.00000 | 100.00000 | Covid |
307 | 2020-01-29T00:00:00Z | 2020 | January | Wednesday | 5 | 40.00000 | 80.00000 | Covid |
308 | 2020-01-30T00:00:00Z | 2020 | January | Thursday | 1 | 0.00000 | 100.00000 | Covid |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
615 | 2020-12-02T00:00:00Z | 2020 | December | Wednesday | 2 | 50.00000 | 100.00000 | Covid |
616 | 2020-12-03T00:00:00Z | 2020 | December | Thursday | 2 | 0.00000 | 50.00000 | Covid |
617 | 2020-12-04T00:00:00Z | 2020 | December | Friday | 5 | 40.00000 | 80.00000 | Covid |
618 | 2020-12-05T00:00:00Z | 2020 | December | Saturday | 4 | 25.00000 | 25.00000 | Covid |
619 | 2020-12-06T00:00:00Z | 2020 | December | Sunday | 3 | 0.00000 | 0.00000 | Covid |
620 | 2020-12-07T00:00:00Z | 2020 | December | Monday | 1 | 0.00000 | 100.00000 | Covid |
621 | 2020-12-08T00:00:00Z | 2020 | December | Tuesday | 1 | 0.00000 | 100.00000 | Covid |
622 | 2020-12-09T00:00:00Z | 2020 | December | Wednesday | 1 | 0.00000 | 0.00000 | Covid |
623 | 2020-12-10T00:00:00Z | 2020 | December | Thursday | 1 | 0.00000 | 100.00000 | Covid |
624 | 2020-12-11T00:00:00Z | 2020 | December | Friday | 1 | 0.00000 | 100.00000 | Covid |
625 | 2020-12-12T00:00:00Z | 2020 | December | Saturday | 3 | 0.00000 | 66.66667 | Covid |
626 | 2020-12-13T00:00:00Z | 2020 | December | Sunday | 5 | 0.00000 | 20.00000 | Covid |
627 | 2020-12-14T00:00:00Z | 2020 | December | Monday | 3 | 0.00000 | 66.66667 | Covid |
628 | 2020-12-15T00:00:00Z | 2020 | December | Tuesday | 2 | 50.00000 | 100.00000 | Covid |
629 | 2020-12-16T00:00:00Z | 2020 | December | Wednesday | 4 | 50.00000 | 75.00000 | Covid |
630 | 2020-12-17T00:00:00Z | 2020 | December | Thursday | 0 | NA | NA | Covid |
631 | 2020-12-18T00:00:00Z | 2020 | December | Friday | 2 | 50.00000 | 50.00000 | Covid |
632 | 2020-12-19T00:00:00Z | 2020 | December | Saturday | 0 | NA | NA | Covid |
633 | 2020-12-20T00:00:00Z | 2020 | December | Sunday | 9 | 11.11111 | 55.55556 | Covid |
634 | 2020-12-21T00:00:00Z | 2020 | December | Monday | 2 | 50.00000 | 50.00000 | Covid |
635 | 2020-12-22T00:00:00Z | 2020 | December | Tuesday | 3 | 0.00000 | 33.33333 | Covid |
636 | 2020-12-23T00:00:00Z | 2020 | December | Wednesday | 0 | NA | NA | Covid |
637 | 2020-12-24T00:00:00Z | 2020 | December | Thursday | 0 | NA | NA | Covid |
638 | 2020-12-25T00:00:00Z | 2020 | December | Friday | 2 | 0.00000 | 0.00000 | Covid |
639 | 2020-12-26T00:00:00Z | 2020 | December | Saturday | 3 | 33.33333 | 100.00000 | Covid |
640 | 2020-12-27T00:00:00Z | 2020 | December | Sunday | 0 | NA | NA | Covid |
641 | 2020-12-28T00:00:00Z | 2020 | December | Monday | 1 | 0.00000 | 0.00000 | Covid |
642 | 2020-12-29T00:00:00Z | 2020 | December | Tuesday | 3 | 0.00000 | 33.33333 | Covid |
643 | 2020-12-30T00:00:00Z | 2020 | December | Wednesday | 1 | 0.00000 | 0.00000 | Covid |
644 | 2020-12-31T00:00:00Z | 2020 | December | Thursday | 3 | 0.00000 | 33.33333 | Covid |
interval_start_timestamp | year | month | day | days_in_guild | leavers | year_type | |
---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <fct> | <int> | <fct> | |
402 | 2020-01-01T00:00:00Z | 2020 | January | Wednesday | 'Members for 1 month+' | 0 | Covid |
403 | 2020-01-02T00:00:00Z | 2020 | January | Thursday | 'Members for 1 month+' | 0 | Covid |
404 | 2020-01-03T00:00:00Z | 2020 | January | Friday | 'Members for 1 month+' | 2 | Covid |
405 | 2020-01-03T00:00:00Z | 2020 | January | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 1 | Covid |
406 | 2020-01-04T00:00:00Z | 2020 | January | Saturday | 'Members for 1 month+' | 2 | Covid |
407 | 2020-01-04T00:00:00Z | 2020 | January | Saturday | 'Members for < 1 month' | 1 | Covid |
408 | 2020-01-05T00:00:00Z | 2020 | January | Sunday | 'Members for 1 month+' | 1 | Covid |
409 | 2020-01-06T00:00:00Z | 2020 | January | <span style=white-space:pre-wrap>Monday </span> | 'Members for < 1 month' | 1 | Covid |
410 | 2020-01-07T00:00:00Z | 2020 | January | Tuesday | 'Members for 1 month+' | 3 | Covid |
411 | 2020-01-08T00:00:00Z | 2020 | January | Wednesday | 'Members for 1 month+' | 1 | Covid |
412 | 2020-01-08T00:00:00Z | 2020 | January | Wednesday | 'Members for < 1 month' | 1 | Covid |
413 | 2020-01-09T00:00:00Z | 2020 | January | Thursday | 'Members for 1 month+' | 2 | Covid |
414 | 2020-01-09T00:00:00Z | 2020 | January | Thursday | 'Members for < 1 month' | 1 | Covid |
415 | 2020-01-10T00:00:00Z | 2020 | January | Friday | 'Members for 1 month+' | 2 | Covid |
416 | 2020-01-11T00:00:00Z | 2020 | January | Saturday | 'Members for 1 month+' | 0 | Covid |
417 | 2020-01-12T00:00:00Z | 2020 | January | Sunday | 'Members for 1 month+' | 2 | Covid |
418 | 2020-01-13T00:00:00Z | 2020 | January | Monday | 'Members for 1 month+' | 4 | Covid |
419 | 2020-01-14T00:00:00Z | 2020 | January | Tuesday | 'Members for 1 month+' | 3 | Covid |
420 | 2020-01-14T00:00:00Z | 2020 | January | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Covid |
421 | 2020-01-15T00:00:00Z | 2020 | January | Wednesday | 'Members for < 1 month' | 1 | Covid |
422 | 2020-01-16T00:00:00Z | 2020 | January | Thursday | 'Members for 1 month+' | 3 | Covid |
423 | 2020-01-16T00:00:00Z | 2020 | January | Thursday | 'Members for < 1 month' | 1 | Covid |
424 | 2020-01-17T00:00:00Z | 2020 | January | Friday | 'Members for 1 month+' | 2 | Covid |
425 | 2020-01-17T00:00:00Z | 2020 | January | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 1 | Covid |
426 | 2020-01-18T00:00:00Z | 2020 | January | Saturday | 'Members for 1 month+' | 2 | Covid |
427 | 2020-01-19T00:00:00Z | 2020 | January | Sunday | 'Members for 1 month+' | 2 | Covid |
428 | 2020-01-20T00:00:00Z | 2020 | January | Monday | 'Members for 1 month+' | 0 | Covid |
429 | 2020-01-21T00:00:00Z | 2020 | January | Tuesday | 'Members for 1 month+' | 7 | Covid |
430 | 2020-01-22T00:00:00Z | 2020 | January | Wednesday | 'Members for 1 month+' | 3 | Covid |
431 | 2020-01-23T00:00:00Z | 2020 | January | Thursday | 'Members for 1 month+' | 1 | Covid |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
940 | 2020-12-11T00:00:00Z | 2020 | December | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 1 | Covid |
941 | 2020-12-12T00:00:00Z | 2020 | December | Saturday | 'Members for 1 month+' | 1 | Covid |
942 | 2020-12-12T00:00:00Z | 2020 | December | Saturday | 'Members for < 1 month' | 1 | Covid |
943 | 2020-12-13T00:00:00Z | 2020 | December | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 2 | Covid |
944 | 2020-12-14T00:00:00Z | 2020 | December | Monday | 'Members for 1 month+' | 2 | Covid |
945 | 2020-12-14T00:00:00Z | 2020 | December | <span style=white-space:pre-wrap>Monday </span> | 'Members for < 1 month' | 1 | Covid |
946 | 2020-12-15T00:00:00Z | 2020 | December | Tuesday | 'Members for 1 month+' | 0 | Covid |
947 | 2020-12-16T00:00:00Z | 2020 | December | Wednesday | 'Members for 1 month+' | 1 | Covid |
948 | 2020-12-16T00:00:00Z | 2020 | December | Wednesday | 'Members for < 1 month' | 1 | Covid |
949 | 2020-12-17T00:00:00Z | 2020 | December | Thursday | 'Members for 1 month+' | 2 | Covid |
950 | 2020-12-18T00:00:00Z | 2020 | December | Friday | 'Members for 1 month+' | 0 | Covid |
951 | 2020-12-19T00:00:00Z | 2020 | December | Saturday | 'Members for 1 month+' | 2 | Covid |
952 | 2020-12-19T00:00:00Z | 2020 | December | Saturday | 'Members for < 1 month' | 1 | Covid |
953 | 2020-12-20T00:00:00Z | 2020 | December | Sunday | 'Members for 1 month+' | 7 | Covid |
954 | 2020-12-20T00:00:00Z | 2020 | December | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 2 | Covid |
955 | 2020-12-21T00:00:00Z | 2020 | December | Monday | 'Members for 1 month+' | 1 | Covid |
956 | 2020-12-22T00:00:00Z | 2020 | December | Tuesday | 'Members for 1 month+' | 1 | Covid |
957 | 2020-12-22T00:00:00Z | 2020 | December | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Covid |
958 | 2020-12-23T00:00:00Z | 2020 | December | Wednesday | 'Members for 1 month+' | 3 | Covid |
959 | 2020-12-24T00:00:00Z | 2020 | December | Thursday | 'Members for 1 month+' | 0 | Covid |
960 | 2020-12-25T00:00:00Z | 2020 | December | Friday | 'Members for 1 month+' | 7 | Covid |
961 | 2020-12-25T00:00:00Z | 2020 | December | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 2 | Covid |
962 | 2020-12-26T00:00:00Z | 2020 | December | Saturday | 'Members for 1 month+' | 1 | Covid |
963 | 2020-12-26T00:00:00Z | 2020 | December | Saturday | 'Members for < 1 month' | 1 | Covid |
964 | 2020-12-27T00:00:00Z | 2020 | December | Sunday | 'Members for 1 month+' | 4 | Covid |
965 | 2020-12-28T00:00:00Z | 2020 | December | Monday | 'Members for 1 month+' | 2 | Covid |
966 | 2020-12-29T00:00:00Z | 2020 | December | Tuesday | 'Members for 1 month+' | 3 | Covid |
967 | 2020-12-29T00:00:00Z | 2020 | December | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Covid |
968 | 2020-12-30T00:00:00Z | 2020 | December | Wednesday | 'Members for 1 month+' | 4 | Covid |
969 | 2020-12-31T00:00:00Z | 2020 | December | Thursday | 'Members for 1 month+' | 2 | Covid |
interval_start_timestamp | year | month | day | discovery_joins | invites | vanity_joins | year_type | |
---|---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <int> | <int> | <fct> | |
279 | 2020-01-01T00:00:00Z | 2020 | January | Wednesday | 0 | 0 | 0 | Covid |
280 | 2020-01-02T00:00:00Z | 2020 | January | Thursday | 0 | 0 | 1 | Covid |
281 | 2020-01-03T00:00:00Z | 2020 | January | Friday | 0 | 0 | 2 | Covid |
282 | 2020-01-04T00:00:00Z | 2020 | January | Saturday | 0 | 0 | 0 | Covid |
283 | 2020-01-05T00:00:00Z | 2020 | January | Sunday | 0 | 0 | 0 | Covid |
284 | 2020-01-06T00:00:00Z | 2020 | January | Monday | 0 | 0 | 3 | Covid |
285 | 2020-01-07T00:00:00Z | 2020 | January | Tuesday | 0 | 0 | 3 | Covid |
286 | 2020-01-08T00:00:00Z | 2020 | January | Wednesday | 0 | 0 | 4 | Covid |
287 | 2020-01-09T00:00:00Z | 2020 | January | Thursday | 0 | 0 | 3 | Covid |
288 | 2020-01-10T00:00:00Z | 2020 | January | Friday | 0 | 0 | 3 | Covid |
289 | 2020-01-11T00:00:00Z | 2020 | January | Saturday | 0 | 0 | 0 | Covid |
290 | 2020-01-12T00:00:00Z | 2020 | January | Sunday | 0 | 0 | 2 | Covid |
291 | 2020-01-13T00:00:00Z | 2020 | January | Monday | 0 | 0 | 3 | Covid |
292 | 2020-01-14T00:00:00Z | 2020 | January | Tuesday | 0 | 0 | 8 | Covid |
293 | 2020-01-15T00:00:00Z | 2020 | January | Wednesday | 0 | 0 | 4 | Covid |
294 | 2020-01-16T00:00:00Z | 2020 | January | Thursday | 0 | 0 | 5 | Covid |
295 | 2020-01-17T00:00:00Z | 2020 | January | Friday | 0 | 0 | 2 | Covid |
296 | 2020-01-18T00:00:00Z | 2020 | January | Saturday | 0 | 0 | 4 | Covid |
297 | 2020-01-19T00:00:00Z | 2020 | January | Sunday | 0 | 0 | 3 | Covid |
298 | 2020-01-20T00:00:00Z | 2020 | January | Monday | 0 | 0 | 4 | Covid |
299 | 2020-01-21T00:00:00Z | 2020 | January | Tuesday | 0 | 0 | 4 | Covid |
300 | 2020-01-22T00:00:00Z | 2020 | January | Wednesday | 0 | 0 | 4 | Covid |
301 | 2020-01-23T00:00:00Z | 2020 | January | Thursday | 0 | 0 | 21 | Covid |
302 | 2020-01-24T00:00:00Z | 2020 | January | Friday | 0 | 0 | 1 | Covid |
303 | 2020-01-25T00:00:00Z | 2020 | January | Saturday | 0 | 0 | 4 | Covid |
304 | 2020-01-26T00:00:00Z | 2020 | January | Sunday | 0 | 0 | 3 | Covid |
305 | 2020-01-27T00:00:00Z | 2020 | January | Monday | 0 | 0 | 4 | Covid |
306 | 2020-01-28T00:00:00Z | 2020 | January | Tuesday | 0 | 0 | 2 | Covid |
307 | 2020-01-29T00:00:00Z | 2020 | January | Wednesday | 0 | 0 | 5 | Covid |
308 | 2020-01-30T00:00:00Z | 2020 | January | Thursday | 0 | 0 | 1 | Covid |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
615 | 2020-12-02T00:00:00Z | 2020 | December | Wednesday | 0 | 0 | 4 | Covid |
616 | 2020-12-03T00:00:00Z | 2020 | December | Thursday | 1 | 0 | 1 | Covid |
617 | 2020-12-04T00:00:00Z | 2020 | December | Friday | 0 | 0 | 5 | Covid |
618 | 2020-12-05T00:00:00Z | 2020 | December | Saturday | 0 | 0 | 5 | Covid |
619 | 2020-12-06T00:00:00Z | 2020 | December | Sunday | 0 | 0 | 3 | Covid |
620 | 2020-12-07T00:00:00Z | 2020 | December | Monday | 0 | 0 | 1 | Covid |
621 | 2020-12-08T00:00:00Z | 2020 | December | Tuesday | 0 | 0 | 1 | Covid |
622 | 2020-12-09T00:00:00Z | 2020 | December | Wednesday | 0 | 0 | 2 | Covid |
623 | 2020-12-10T00:00:00Z | 2020 | December | Thursday | 0 | 0 | 1 | Covid |
624 | 2020-12-11T00:00:00Z | 2020 | December | Friday | 0 | 0 | 1 | Covid |
625 | 2020-12-12T00:00:00Z | 2020 | December | Saturday | 0 | 0 | 3 | Covid |
626 | 2020-12-13T00:00:00Z | 2020 | December | Sunday | 2 | 0 | 4 | Covid |
627 | 2020-12-14T00:00:00Z | 2020 | December | Monday | 0 | 0 | 4 | Covid |
628 | 2020-12-15T00:00:00Z | 2020 | December | Tuesday | 0 | 0 | 3 | Covid |
629 | 2020-12-16T00:00:00Z | 2020 | December | Wednesday | 1 | 0 | 3 | Covid |
630 | 2020-12-17T00:00:00Z | 2020 | December | Thursday | 0 | 0 | 0 | Covid |
631 | 2020-12-18T00:00:00Z | 2020 | December | Friday | 0 | 0 | 2 | Covid |
632 | 2020-12-19T00:00:00Z | 2020 | December | Saturday | 0 | 0 | 3 | Covid |
633 | 2020-12-20T00:00:00Z | 2020 | December | Sunday | 0 | 0 | 9 | Covid |
634 | 2020-12-21T00:00:00Z | 2020 | December | Monday | 0 | 0 | 3 | Covid |
635 | 2020-12-22T00:00:00Z | 2020 | December | Tuesday | 0 | 0 | 3 | Covid |
636 | 2020-12-23T00:00:00Z | 2020 | December | Wednesday | 0 | 0 | 0 | Covid |
637 | 2020-12-24T00:00:00Z | 2020 | December | Thursday | 0 | 0 | 0 | Covid |
638 | 2020-12-25T00:00:00Z | 2020 | December | Friday | 0 | 0 | 2 | Covid |
639 | 2020-12-26T00:00:00Z | 2020 | December | Saturday | 0 | 0 | 4 | Covid |
640 | 2020-12-27T00:00:00Z | 2020 | December | Sunday | 0 | 0 | 0 | Covid |
641 | 2020-12-28T00:00:00Z | 2020 | December | Monday | 0 | 0 | 1 | Covid |
642 | 2020-12-29T00:00:00Z | 2020 | December | Tuesday | 1 | 0 | 2 | Covid |
643 | 2020-12-30T00:00:00Z | 2020 | December | Wednesday | 0 | 0 | 2 | Covid |
644 | 2020-12-31T00:00:00Z | 2020 | December | Thursday | 0 | 0 | 3 | Covid |
interval_start_timestamp | year | month | day | visitors | pct_communicated | total_communicated | year_type | |
---|---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> | <fct> | |
279 | 2020-01-01T00:00:00Z | 2020 | January | Wednesday | 106 | 25.471698 | 27 | Covid |
280 | 2020-01-02T00:00:00Z | 2020 | January | Thursday | 105 | 22.857143 | 24 | Covid |
281 | 2020-01-03T00:00:00Z | 2020 | January | Friday | 104 | 25.000000 | 26 | Covid |
282 | 2020-01-04T00:00:00Z | 2020 | January | Saturday | 103 | 26.213592 | 27 | Covid |
283 | 2020-01-05T00:00:00Z | 2020 | January | Sunday | 93 | 23.655914 | 22 | Covid |
284 | 2020-01-06T00:00:00Z | 2020 | January | Monday | 102 | 17.647059 | 18 | Covid |
285 | 2020-01-07T00:00:00Z | 2020 | January | Tuesday | 101 | 26.732673 | 27 | Covid |
286 | 2020-01-08T00:00:00Z | 2020 | January | Wednesday | 109 | 26.605505 | 29 | Covid |
287 | 2020-01-09T00:00:00Z | 2020 | January | Thursday | 110 | 24.545455 | 27 | Covid |
288 | 2020-01-10T00:00:00Z | 2020 | January | Friday | 101 | 19.801980 | 20 | Covid |
289 | 2020-01-11T00:00:00Z | 2020 | January | Saturday | 96 | 27.083333 | 26 | Covid |
290 | 2020-01-12T00:00:00Z | 2020 | January | Sunday | 121 | 27.272727 | 33 | Covid |
291 | 2020-01-13T00:00:00Z | 2020 | January | Monday | 114 | 22.807018 | 26 | Covid |
292 | 2020-01-14T00:00:00Z | 2020 | January | Tuesday | 112 | 29.464286 | 33 | Covid |
293 | 2020-01-15T00:00:00Z | 2020 | January | Wednesday | 117 | 29.059829 | 34 | Covid |
294 | 2020-01-16T00:00:00Z | 2020 | January | Thursday | 134 | 35.820896 | 48 | Covid |
295 | 2020-01-17T00:00:00Z | 2020 | January | Friday | 124 | 28.225806 | 35 | Covid |
296 | 2020-01-18T00:00:00Z | 2020 | January | Saturday | 392 | 7.142857 | 28 | Covid |
297 | 2020-01-19T00:00:00Z | 2020 | January | Sunday | 391 | 5.882353 | 23 | Covid |
298 | 2020-01-20T00:00:00Z | 2020 | January | Monday | 171 | 21.052632 | 36 | Covid |
299 | 2020-01-21T00:00:00Z | 2020 | January | Tuesday | 433 | 8.775982 | 38 | Covid |
300 | 2020-01-22T00:00:00Z | 2020 | January | Wednesday | 242 | 18.595041 | 45 | Covid |
301 | 2020-01-23T00:00:00Z | 2020 | January | Thursday | 192 | 29.166667 | 56 | Covid |
302 | 2020-01-24T00:00:00Z | 2020 | January | Friday | 248 | 20.564516 | 51 | Covid |
303 | 2020-01-25T00:00:00Z | 2020 | January | Saturday | 410 | 14.390244 | 59 | Covid |
304 | 2020-01-26T00:00:00Z | 2020 | January | Sunday | 191 | 14.659686 | 28 | Covid |
305 | 2020-01-27T00:00:00Z | 2020 | January | Monday | 154 | 25.324675 | 39 | Covid |
306 | 2020-01-28T00:00:00Z | 2020 | January | Tuesday | 166 | 25.903614 | 43 | Covid |
307 | 2020-01-29T00:00:00Z | 2020 | January | Wednesday | 505 | 12.871287 | 65 | Covid |
308 | 2020-01-30T00:00:00Z | 2020 | January | Thursday | 444 | 10.360360 | 46 | Covid |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
615 | 2020-12-02T00:00:00Z | 2020 | December | Wednesday | 159 | 16.981132 | 27 | Covid |
616 | 2020-12-03T00:00:00Z | 2020 | December | Thursday | 266 | 14.285714 | 38 | Covid |
617 | 2020-12-04T00:00:00Z | 2020 | December | Friday | 193 | 21.761658 | 42 | Covid |
618 | 2020-12-05T00:00:00Z | 2020 | December | Saturday | 157 | 26.114650 | 41 | Covid |
619 | 2020-12-06T00:00:00Z | 2020 | December | Sunday | 151 | 18.543046 | 28 | Covid |
620 | 2020-12-07T00:00:00Z | 2020 | December | Monday | 150 | 18.000000 | 27 | Covid |
621 | 2020-12-08T00:00:00Z | 2020 | December | Tuesday | 546 | 5.677656 | 31 | Covid |
622 | 2020-12-09T00:00:00Z | 2020 | December | Wednesday | 157 | 15.286624 | 24 | Covid |
623 | 2020-12-10T00:00:00Z | 2020 | December | Thursday | 135 | 22.962963 | 31 | Covid |
624 | 2020-12-11T00:00:00Z | 2020 | December | Friday | 167 | 17.964072 | 30 | Covid |
625 | 2020-12-12T00:00:00Z | 2020 | December | Saturday | 250 | 11.200000 | 28 | Covid |
626 | 2020-12-13T00:00:00Z | 2020 | December | Sunday | 137 | 16.788321 | 23 | Covid |
627 | 2020-12-14T00:00:00Z | 2020 | December | Monday | 120 | 23.333333 | 28 | Covid |
628 | 2020-12-15T00:00:00Z | 2020 | December | Tuesday | 126 | 24.603175 | 31 | Covid |
629 | 2020-12-16T00:00:00Z | 2020 | December | Wednesday | 242 | 17.768595 | 43 | Covid |
630 | 2020-12-17T00:00:00Z | 2020 | December | Thursday | 168 | 22.619048 | 38 | Covid |
631 | 2020-12-18T00:00:00Z | 2020 | December | Friday | 138 | 13.043478 | 18 | Covid |
632 | 2020-12-19T00:00:00Z | 2020 | December | Saturday | 263 | 9.125475 | 24 | Covid |
633 | 2020-12-20T00:00:00Z | 2020 | December | Sunday | 258 | 9.689922 | 25 | Covid |
634 | 2020-12-21T00:00:00Z | 2020 | December | Monday | 130 | 13.076923 | 17 | Covid |
635 | 2020-12-22T00:00:00Z | 2020 | December | Tuesday | 136 | 13.235294 | 18 | Covid |
636 | 2020-12-23T00:00:00Z | 2020 | December | Wednesday | 120 | 16.666667 | 20 | Covid |
637 | 2020-12-24T00:00:00Z | 2020 | December | Thursday | 107 | 26.168224 | 28 | Covid |
638 | 2020-12-25T00:00:00Z | 2020 | December | Friday | 550 | 3.818182 | 21 | Covid |
639 | 2020-12-26T00:00:00Z | 2020 | December | Saturday | 149 | 12.751678 | 19 | Covid |
640 | 2020-12-27T00:00:00Z | 2020 | December | Sunday | 141 | 14.893617 | 21 | Covid |
641 | 2020-12-28T00:00:00Z | 2020 | December | Monday | 116 | 22.413793 | 26 | Covid |
642 | 2020-12-29T00:00:00Z | 2020 | December | Tuesday | 114 | 26.315789 | 30 | Covid |
643 | 2020-12-30T00:00:00Z | 2020 | December | Wednesday | 125 | 18.400000 | 23 | Covid |
644 | 2020-12-31T00:00:00Z | 2020 | December | Thursday | 156 | 21.794872 | 34 | Covid |
joins.2021
leaves.2021
sources.2021
comm.2021
interval_start_timestamp | year | month | day | new_members | pct_communicated | pct_opened_channels | year_type | |
---|---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> | <fct> | |
645 | 2021-01-01T00:00:00Z | 2021 | January | Friday | 5 | 20.00000 | 40.00000 | Covid |
646 | 2021-01-02T00:00:00Z | 2021 | January | Saturday | 2 | 0.00000 | 100.00000 | Covid |
647 | 2021-01-03T00:00:00Z | 2021 | January | Sunday | 2 | 0.00000 | 50.00000 | Covid |
648 | 2021-01-04T00:00:00Z | 2021 | January | Monday | 0 | NA | NA | Covid |
649 | 2021-01-05T00:00:00Z | 2021 | January | Tuesday | 2 | 0.00000 | 50.00000 | Covid |
650 | 2021-01-06T00:00:00Z | 2021 | January | Wednesday | 1 | 0.00000 | 100.00000 | Covid |
651 | 2021-01-07T00:00:00Z | 2021 | January | Thursday | 2 | 50.00000 | 50.00000 | Covid |
652 | 2021-01-08T00:00:00Z | 2021 | January | Friday | 16 | 31.25000 | 68.75000 | Covid |
653 | 2021-01-09T00:00:00Z | 2021 | January | Saturday | 3 | 0.00000 | 0.00000 | Covid |
654 | 2021-01-10T00:00:00Z | 2021 | January | Sunday | 3 | 33.33333 | 66.66667 | Covid |
655 | 2021-01-11T00:00:00Z | 2021 | January | Monday | 2 | 0.00000 | 50.00000 | Covid |
656 | 2021-01-12T00:00:00Z | 2021 | January | Tuesday | 2 | 0.00000 | 50.00000 | Covid |
657 | 2021-01-13T00:00:00Z | 2021 | January | Wednesday | 4 | 0.00000 | 75.00000 | Covid |
658 | 2021-01-14T00:00:00Z | 2021 | January | Thursday | 1 | 0.00000 | 100.00000 | Covid |
659 | 2021-01-15T00:00:00Z | 2021 | January | Friday | 5 | 80.00000 | 100.00000 | Covid |
660 | 2021-01-16T00:00:00Z | 2021 | January | Saturday | 2 | 0.00000 | 50.00000 | Covid |
661 | 2021-01-17T00:00:00Z | 2021 | January | Sunday | 2 | 0.00000 | 100.00000 | Covid |
662 | 2021-01-18T00:00:00Z | 2021 | January | Monday | 3 | 66.66667 | 100.00000 | Covid |
663 | 2021-01-19T00:00:00Z | 2021 | January | Tuesday | 1 | 0.00000 | 0.00000 | Covid |
664 | 2021-01-20T00:00:00Z | 2021 | January | Wednesday | 2 | 50.00000 | 50.00000 | Covid |
665 | 2021-01-21T00:00:00Z | 2021 | January | Thursday | 8 | 0.00000 | 25.00000 | Covid |
666 | 2021-01-22T00:00:00Z | 2021 | January | Friday | 1 | 0.00000 | 100.00000 | Covid |
667 | 2021-01-23T00:00:00Z | 2021 | January | Saturday | 1 | 0.00000 | 100.00000 | Covid |
668 | 2021-01-24T00:00:00Z | 2021 | January | Sunday | 4 | 0.00000 | 75.00000 | Covid |
669 | 2021-01-25T00:00:00Z | 2021 | January | Monday | 14 | 21.42857 | 57.14286 | Covid |
670 | 2021-01-26T00:00:00Z | 2021 | January | Tuesday | 2 | 0.00000 | 50.00000 | Covid |
671 | 2021-01-27T00:00:00Z | 2021 | January | Wednesday | 6 | 33.33333 | 83.33333 | Covid |
672 | 2021-01-28T00:00:00Z | 2021 | January | Thursday | 5 | 0.00000 | 20.00000 | Covid |
673 | 2021-01-29T00:00:00Z | 2021 | January | Friday | 6 | 16.66667 | 66.66667 | Covid |
674 | 2021-01-30T00:00:00Z | 2021 | January | Saturday | 2 | 50.00000 | 100.00000 | Covid |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
700 | 2021-02-25T00:00:00Z | 2021 | February | Thursday | 1 | 0.00000 | 100.00000 | Covid |
701 | 2021-02-26T00:00:00Z | 2021 | February | Friday | 5 | 40.00000 | 100.00000 | Covid |
702 | 2021-02-27T00:00:00Z | 2021 | February | Saturday | 8 | 12.50000 | 100.00000 | Covid |
703 | 2021-02-28T00:00:00Z | 2021 | February | Sunday | 5 | 20.00000 | 100.00000 | Covid |
704 | 2021-03-01T00:00:00Z | 2021 | March | Monday | 2 | 0.00000 | 50.00000 | Covid |
705 | 2021-03-02T00:00:00Z | 2021 | March | Tuesday | 6 | 16.66667 | 16.66667 | Covid |
706 | 2021-03-03T00:00:00Z | 2021 | March | Wednesday | 5 | 0.00000 | 40.00000 | Covid |
707 | 2021-03-04T00:00:00Z | 2021 | March | Thursday | 8 | 0.00000 | 62.50000 | Covid |
708 | 2021-03-05T00:00:00Z | 2021 | March | Friday | 3 | 33.33333 | 33.33333 | Covid |
709 | 2021-03-06T00:00:00Z | 2021 | March | Saturday | 3 | 0.00000 | 66.66667 | Covid |
710 | 2021-03-07T00:00:00Z | 2021 | March | Sunday | 3 | 0.00000 | 33.33333 | Covid |
711 | 2021-03-08T00:00:00Z | 2021 | March | Monday | 7 | 14.28571 | 42.85714 | Covid |
712 | 2021-03-09T00:00:00Z | 2021 | March | Tuesday | 7 | 0.00000 | 57.14286 | Covid |
713 | 2021-03-10T00:00:00Z | 2021 | March | Wednesday | 5 | 0.00000 | 40.00000 | Covid |
714 | 2021-03-11T00:00:00Z | 2021 | March | Thursday | 1 | 0.00000 | 100.00000 | Covid |
715 | 2021-03-12T00:00:00Z | 2021 | March | Friday | 11 | 18.18182 | 45.45455 | Covid |
716 | 2021-03-13T00:00:00Z | 2021 | March | Saturday | 4 | 0.00000 | 50.00000 | Covid |
717 | 2021-03-14T00:00:00Z | 2021 | March | Sunday | 1 | 0.00000 | 0.00000 | Covid |
718 | 2021-03-15T00:00:00Z | 2021 | March | Monday | 1 | 0.00000 | 0.00000 | Covid |
719 | 2021-03-16T00:00:00Z | 2021 | March | Tuesday | 6 | 0.00000 | 83.33333 | Covid |
720 | 2021-03-17T00:00:00Z | 2021 | March | Wednesday | 7 | 0.00000 | 71.42857 | Covid |
721 | 2021-03-18T00:00:00Z | 2021 | March | Thursday | 1 | 0.00000 | 0.00000 | Covid |
722 | 2021-03-19T00:00:00Z | 2021 | March | Friday | 5 | 0.00000 | 80.00000 | Covid |
723 | 2021-03-20T00:00:00Z | 2021 | March | Saturday | 2 | 0.00000 | 0.00000 | Covid |
724 | 2021-03-21T00:00:00Z | 2021 | March | Sunday | 6 | 33.33333 | 33.33333 | Covid |
725 | 2021-03-22T00:00:00Z | 2021 | March | Monday | 5 | 20.00000 | 60.00000 | Covid |
726 | 2021-03-23T00:00:00Z | 2021 | March | Tuesday | 1 | 0.00000 | 0.00000 | Covid |
727 | 2021-03-24T00:00:00Z | 2021 | March | Wednesday | 4 | 0.00000 | 50.00000 | Covid |
728 | 2021-03-25T00:00:00Z | 2021 | March | Thursday | 1 | 0.00000 | 0.00000 | Covid |
729 | 2021-03-26T00:00:00Z | 2021 | March | Friday | 4 | NA | NA | Covid |
interval_start_timestamp | year | month | day | days_in_guild | leavers | year_type | |
---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <fct> | <int> | <fct> | |
970 | 2021-01-01T00:00:00Z | 2021 | January | Friday | 'Members for 1 month+' | 4 | Covid |
971 | 2021-01-01T00:00:00Z | 2021 | January | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 2 | Covid |
972 | 2021-01-02T00:00:00Z | 2021 | January | Saturday | 'Members for 1 month+' | 2 | Covid |
973 | 2021-01-02T00:00:00Z | 2021 | January | Saturday | 'Members for < 1 month' | 2 | Covid |
974 | 2021-01-03T00:00:00Z | 2021 | January | Sunday | 'Members for 1 month+' | 1 | Covid |
975 | 2021-01-03T00:00:00Z | 2021 | January | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 1 | Covid |
976 | 2021-01-04T00:00:00Z | 2021 | January | Monday | 'Members for 1 month+' | 2 | Covid |
977 | 2021-01-05T00:00:00Z | 2021 | January | Tuesday | 'Members for 1 month+' | 4 | Covid |
978 | 2021-01-06T00:00:00Z | 2021 | January | Wednesday | 'Members for 1 month+' | 2 | Covid |
979 | 2021-01-07T00:00:00Z | 2021 | January | Thursday | 'Members for 1 month+' | 4 | Covid |
980 | 2021-01-07T00:00:00Z | 2021 | January | Thursday | 'Members for < 1 month' | 1 | Covid |
981 | 2021-01-08T00:00:00Z | 2021 | January | Friday | 'Members for 1 month+' | 5 | Covid |
982 | 2021-01-08T00:00:00Z | 2021 | January | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 3 | Covid |
983 | 2021-01-09T00:00:00Z | 2021 | January | Saturday | 'Members for 1 month+' | 2 | Covid |
984 | 2021-01-09T00:00:00Z | 2021 | January | Saturday | 'Members for < 1 month' | 2 | Covid |
985 | 2021-01-10T00:00:00Z | 2021 | January | Sunday | 'Members for 1 month+' | 1 | Covid |
986 | 2021-01-11T00:00:00Z | 2021 | January | Monday | 'Members for 1 month+' | 2 | Covid |
987 | 2021-01-12T00:00:00Z | 2021 | January | Tuesday | 'Members for 1 month+' | 1 | Covid |
988 | 2021-01-13T00:00:00Z | 2021 | January | Wednesday | 'Members for 1 month+' | 3 | Covid |
989 | 2021-01-13T00:00:00Z | 2021 | January | Wednesday | 'Members for < 1 month' | 1 | Covid |
990 | 2021-01-14T00:00:00Z | 2021 | January | Thursday | 'Members for 1 month+' | 2 | Covid |
991 | 2021-01-15T00:00:00Z | 2021 | January | Friday | 'Members for 1 month+' | 2 | Covid |
992 | 2021-01-16T00:00:00Z | 2021 | January | Saturday | 'Members for 1 month+' | 4 | Covid |
993 | 2021-01-17T00:00:00Z | 2021 | January | Sunday | 'Members for 1 month+' | 0 | Covid |
994 | 2021-01-18T00:00:00Z | 2021 | January | <span style=white-space:pre-wrap>Monday </span> | 'Members for < 1 month' | 1 | Covid |
995 | 2021-01-19T00:00:00Z | 2021 | January | Tuesday | 'Members for 1 month+' | 3 | Covid |
996 | 2021-01-19T00:00:00Z | 2021 | January | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Covid |
997 | 2021-01-20T00:00:00Z | 2021 | January | Wednesday | 'Members for 1 month+' | 3 | Covid |
998 | 2021-01-20T00:00:00Z | 2021 | January | Wednesday | 'Members for < 1 month' | 1 | Covid |
999 | 2021-01-21T00:00:00Z | 2021 | January | Thursday | 'Members for 1 month+' | 1 | Covid |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
1075 | 2021-03-09T00:00:00Z | 2021 | March | Tuesday | 'Members for 1 month+' | 2 | Covid |
1076 | 2021-03-09T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Covid |
1077 | 2021-03-10T00:00:00Z | 2021 | March | Wednesday | 'Members for 1 month+' | 2 | Covid |
1078 | 2021-03-10T00:00:00Z | 2021 | March | Wednesday | 'Members for < 1 month' | 3 | Covid |
1079 | 2021-03-11T00:00:00Z | 2021 | March | Thursday | 'Members for 1 month+' | 2 | Covid |
1080 | 2021-03-12T00:00:00Z | 2021 | March | Friday | 'Members for 1 month+' | 1 | Covid |
1081 | 2021-03-12T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 5 | Covid |
1082 | 2021-03-13T00:00:00Z | 2021 | March | Saturday | 'Members for < 1 month' | 1 | Covid |
1083 | 2021-03-14T00:00:00Z | 2021 | March | Sunday | 'Members for 1 month+' | 1 | Covid |
1084 | 2021-03-14T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 1 | Covid |
1085 | 2021-03-15T00:00:00Z | 2021 | March | Monday | 'Members for 1 month+' | 2 | Covid |
1086 | 2021-03-16T00:00:00Z | 2021 | March | Tuesday | 'Members for 1 month+' | 1 | Covid |
1087 | 2021-03-16T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 3 | Covid |
1088 | 2021-03-17T00:00:00Z | 2021 | March | Wednesday | 'Members for 1 month+' | 4 | Covid |
1089 | 2021-03-17T00:00:00Z | 2021 | March | Wednesday | 'Members for < 1 month' | 2 | Covid |
1090 | 2021-03-18T00:00:00Z | 2021 | March | Thursday | 'Members for < 1 month' | 1 | Covid |
1091 | 2021-03-19T00:00:00Z | 2021 | March | Friday | 'Members for 1 month+' | 2 | Covid |
1092 | 2021-03-19T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 2 | Covid |
1093 | 2021-03-20T00:00:00Z | 2021 | March | Saturday | 'Members for 1 month+' | 5 | Covid |
1094 | 2021-03-20T00:00:00Z | 2021 | March | Saturday | 'Members for < 1 month' | 1 | Covid |
1095 | 2021-03-21T00:00:00Z | 2021 | March | Sunday | 'Members for 1 month+' | 1 | Covid |
1096 | 2021-03-21T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 3 | Covid |
1097 | 2021-03-22T00:00:00Z | 2021 | March | Monday | 'Members for 1 month+' | 1 | Covid |
1098 | 2021-03-23T00:00:00Z | 2021 | March | Tuesday | 'Members for 1 month+' | 3 | Covid |
1099 | 2021-03-23T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Covid |
1100 | 2021-03-24T00:00:00Z | 2021 | March | Wednesday | 'Members for 1 month+' | 0 | Covid |
1101 | 2021-03-25T00:00:00Z | 2021 | March | Thursday | 'Members for 1 month+' | 2 | Covid |
1102 | 2021-03-25T00:00:00Z | 2021 | March | Thursday | 'Members for < 1 month' | 1 | Covid |
1103 | 2021-03-26T00:00:00Z | 2021 | March | Friday | 'Members for 1 month+' | 3 | Covid |
1104 | 2021-03-26T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 1 | Covid |
interval_start_timestamp | year | month | day | discovery_joins | invites | vanity_joins | year_type | |
---|---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <int> | <int> | <fct> | |
645 | 2021-01-01T00:00:00Z | 2021 | January | Friday | 0 | 0 | 6 | Covid |
646 | 2021-01-02T00:00:00Z | 2021 | January | Saturday | 0 | 0 | 2 | Covid |
647 | 2021-01-03T00:00:00Z | 2021 | January | Sunday | 1 | 0 | 1 | Covid |
648 | 2021-01-04T00:00:00Z | 2021 | January | Monday | 0 | 0 | 0 | Covid |
649 | 2021-01-05T00:00:00Z | 2021 | January | Tuesday | 0 | 0 | 2 | Covid |
650 | 2021-01-06T00:00:00Z | 2021 | January | Wednesday | 0 | 0 | 1 | Covid |
651 | 2021-01-07T00:00:00Z | 2021 | January | Thursday | 0 | 0 | 2 | Covid |
652 | 2021-01-08T00:00:00Z | 2021 | January | Friday | 0 | 0 | 16 | Covid |
653 | 2021-01-09T00:00:00Z | 2021 | January | Saturday | 0 | 0 | 4 | Covid |
654 | 2021-01-10T00:00:00Z | 2021 | January | Sunday | 0 | 0 | 3 | Covid |
655 | 2021-01-11T00:00:00Z | 2021 | January | Monday | 0 | 0 | 2 | Covid |
656 | 2021-01-12T00:00:00Z | 2021 | January | Tuesday | 0 | 0 | 2 | Covid |
657 | 2021-01-13T00:00:00Z | 2021 | January | Wednesday | 0 | 0 | 4 | Covid |
658 | 2021-01-14T00:00:00Z | 2021 | January | Thursday | 0 | 0 | 1 | Covid |
659 | 2021-01-15T00:00:00Z | 2021 | January | Friday | 0 | 0 | 5 | Covid |
660 | 2021-01-16T00:00:00Z | 2021 | January | Saturday | 0 | 0 | 2 | Covid |
661 | 2021-01-17T00:00:00Z | 2021 | January | Sunday | 0 | 0 | 3 | Covid |
662 | 2021-01-18T00:00:00Z | 2021 | January | Monday | 0 | 0 | 3 | Covid |
663 | 2021-01-19T00:00:00Z | 2021 | January | Tuesday | 0 | 0 | 2 | Covid |
664 | 2021-01-20T00:00:00Z | 2021 | January | Wednesday | 0 | 0 | 2 | Covid |
665 | 2021-01-21T00:00:00Z | 2021 | January | Thursday | 0 | 0 | 9 | Covid |
666 | 2021-01-22T00:00:00Z | 2021 | January | Friday | 0 | 0 | 1 | Covid |
667 | 2021-01-23T00:00:00Z | 2021 | January | Saturday | 0 | 0 | 4 | Covid |
668 | 2021-01-24T00:00:00Z | 2021 | January | Sunday | 0 | 0 | 4 | Covid |
669 | 2021-01-25T00:00:00Z | 2021 | January | Monday | 0 | 0 | 14 | Covid |
670 | 2021-01-26T00:00:00Z | 2021 | January | Tuesday | 0 | 0 | 5 | Covid |
671 | 2021-01-27T00:00:00Z | 2021 | January | Wednesday | 0 | 0 | 6 | Covid |
672 | 2021-01-28T00:00:00Z | 2021 | January | Thursday | 0 | 0 | 5 | Covid |
673 | 2021-01-29T00:00:00Z | 2021 | January | Friday | 1 | 0 | 5 | Covid |
674 | 2021-01-30T00:00:00Z | 2021 | January | Saturday | 0 | 0 | 2 | Covid |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
700 | 2021-02-25T00:00:00Z | 2021 | February | Thursday | 0 | 0 | 1 | Covid |
701 | 2021-02-26T00:00:00Z | 2021 | February | Friday | 0 | 0 | 6 | Covid |
702 | 2021-02-27T00:00:00Z | 2021 | February | Saturday | 0 | 0 | 9 | Covid |
703 | 2021-02-28T00:00:00Z | 2021 | February | Sunday | 0 | 0 | 5 | Covid |
704 | 2021-03-01T00:00:00Z | 2021 | March | Monday | 0 | 0 | 3 | Covid |
705 | 2021-03-02T00:00:00Z | 2021 | March | Tuesday | 0 | 0 | 6 | Covid |
706 | 2021-03-03T00:00:00Z | 2021 | March | Wednesday | 0 | 0 | 5 | Covid |
707 | 2021-03-04T00:00:00Z | 2021 | March | Thursday | 0 | 0 | 8 | Covid |
708 | 2021-03-05T00:00:00Z | 2021 | March | Friday | 0 | 0 | 4 | Covid |
709 | 2021-03-06T00:00:00Z | 2021 | March | Saturday | 0 | 0 | 3 | Covid |
710 | 2021-03-07T00:00:00Z | 2021 | March | Sunday | 0 | 0 | 4 | Covid |
711 | 2021-03-08T00:00:00Z | 2021 | March | Monday | 0 | 0 | 7 | Covid |
712 | 2021-03-09T00:00:00Z | 2021 | March | Tuesday | 1 | 0 | 6 | Covid |
713 | 2021-03-10T00:00:00Z | 2021 | March | Wednesday | 0 | 0 | 5 | Covid |
714 | 2021-03-11T00:00:00Z | 2021 | March | Thursday | 0 | 0 | 2 | Covid |
715 | 2021-03-12T00:00:00Z | 2021 | March | Friday | 0 | 0 | 11 | Covid |
716 | 2021-03-13T00:00:00Z | 2021 | March | Saturday | 1 | 0 | 3 | Covid |
717 | 2021-03-14T00:00:00Z | 2021 | March | Sunday | 0 | 0 | 1 | Covid |
718 | 2021-03-15T00:00:00Z | 2021 | March | Monday | 0 | 0 | 2 | Covid |
719 | 2021-03-16T00:00:00Z | 2021 | March | Tuesday | 1 | 0 | 6 | Covid |
720 | 2021-03-17T00:00:00Z | 2021 | March | Wednesday | 1 | 0 | 9 | Covid |
721 | 2021-03-18T00:00:00Z | 2021 | March | Thursday | 0 | 0 | 1 | Covid |
722 | 2021-03-19T00:00:00Z | 2021 | March | Friday | 1 | 0 | 4 | Covid |
723 | 2021-03-20T00:00:00Z | 2021 | March | Saturday | 0 | 0 | 2 | Covid |
724 | 2021-03-21T00:00:00Z | 2021 | March | Sunday | 0 | 0 | 7 | Covid |
725 | 2021-03-22T00:00:00Z | 2021 | March | Monday | 0 | 0 | 6 | Covid |
726 | 2021-03-23T00:00:00Z | 2021 | March | Tuesday | 0 | 0 | 1 | Covid |
727 | 2021-03-24T00:00:00Z | 2021 | March | Wednesday | 0 | 0 | 5 | Covid |
728 | 2021-03-25T00:00:00Z | 2021 | March | Thursday | 0 | 0 | 2 | Covid |
729 | 2021-03-26T00:00:00Z | 2021 | March | Friday | 0 | 0 | 4 | Covid |
interval_start_timestamp | year | month | day | visitors | pct_communicated | total_communicated | year_type | |
---|---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> | <fct> | |
645 | 2021-01-01T00:00:00Z | 2021 | January | Friday | 312 | 9.294872 | 29 | Covid |
646 | 2021-01-02T00:00:00Z | 2021 | January | Saturday | 174 | 17.241379 | 30 | Covid |
647 | 2021-01-03T00:00:00Z | 2021 | January | Sunday | 132 | 18.939394 | 25 | Covid |
648 | 2021-01-04T00:00:00Z | 2021 | January | Monday | 112 | 21.428571 | 24 | Covid |
649 | 2021-01-05T00:00:00Z | 2021 | January | Tuesday | 144 | 12.500000 | 18 | Covid |
650 | 2021-01-06T00:00:00Z | 2021 | January | Wednesday | 368 | 7.065217 | 26 | Covid |
651 | 2021-01-07T00:00:00Z | 2021 | January | Thursday | 315 | 13.015873 | 41 | Covid |
652 | 2021-01-08T00:00:00Z | 2021 | January | Friday | 274 | 16.788321 | 46 | Covid |
653 | 2021-01-09T00:00:00Z | 2021 | January | Saturday | 248 | 10.483871 | 26 | Covid |
654 | 2021-01-10T00:00:00Z | 2021 | January | Sunday | 149 | 18.791946 | 28 | Covid |
655 | 2021-01-11T00:00:00Z | 2021 | January | Monday | 225 | 16.888889 | 38 | Covid |
656 | 2021-01-12T00:00:00Z | 2021 | January | Tuesday | 150 | 17.333333 | 26 | Covid |
657 | 2021-01-13T00:00:00Z | 2021 | January | Wednesday | 152 | 18.421053 | 28 | Covid |
658 | 2021-01-14T00:00:00Z | 2021 | January | Thursday | 144 | 15.277778 | 22 | Covid |
659 | 2021-01-15T00:00:00Z | 2021 | January | Friday | 148 | 27.027027 | 40 | Covid |
660 | 2021-01-16T00:00:00Z | 2021 | January | Saturday | 123 | 19.512195 | 24 | Covid |
661 | 2021-01-17T00:00:00Z | 2021 | January | Sunday | 129 | 13.178295 | 17 | Covid |
662 | 2021-01-18T00:00:00Z | 2021 | January | Monday | 136 | 23.529412 | 32 | Covid |
663 | 2021-01-19T00:00:00Z | 2021 | January | Tuesday | 133 | 20.300752 | 27 | Covid |
664 | 2021-01-20T00:00:00Z | 2021 | January | Wednesday | 136 | 19.852941 | 27 | Covid |
665 | 2021-01-21T00:00:00Z | 2021 | January | Thursday | 127 | 23.622047 | 30 | Covid |
666 | 2021-01-22T00:00:00Z | 2021 | January | Friday | 192 | 19.270833 | 37 | Covid |
667 | 2021-01-23T00:00:00Z | 2021 | January | Saturday | 139 | 19.424460 | 27 | Covid |
668 | 2021-01-24T00:00:00Z | 2021 | January | Sunday | 153 | 15.686275 | 24 | Covid |
669 | 2021-01-25T00:00:00Z | 2021 | January | Monday | 276 | 15.217391 | 42 | Covid |
670 | 2021-01-26T00:00:00Z | 2021 | January | Tuesday | 184 | 19.021739 | 35 | Covid |
671 | 2021-01-27T00:00:00Z | 2021 | January | Wednesday | 182 | 24.725275 | 45 | Covid |
672 | 2021-01-28T00:00:00Z | 2021 | January | Thursday | 605 | 6.280992 | 38 | Covid |
673 | 2021-01-29T00:00:00Z | 2021 | January | Friday | 261 | 13.409962 | 35 | Covid |
674 | 2021-01-30T00:00:00Z | 2021 | January | Saturday | 201 | 20.398010 | 41 | Covid |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
700 | 2021-02-25T00:00:00Z | 2021 | February | Thursday | 172 | 23.255814 | 40 | Covid |
701 | 2021-02-26T00:00:00Z | 2021 | February | Friday | 167 | 19.161677 | 32 | Covid |
702 | 2021-02-27T00:00:00Z | 2021 | February | Saturday | 208 | 20.673077 | 43 | Covid |
703 | 2021-02-28T00:00:00Z | 2021 | February | Sunday | 167 | 17.964072 | 30 | Covid |
704 | 2021-03-01T00:00:00Z | 2021 | March | Monday | 164 | 18.292683 | 30 | Covid |
705 | 2021-03-02T00:00:00Z | 2021 | March | Tuesday | 199 | 15.075377 | 30 | Covid |
706 | 2021-03-03T00:00:00Z | 2021 | March | Wednesday | 163 | 18.404908 | 30 | Covid |
707 | 2021-03-04T00:00:00Z | 2021 | March | Thursday | 163 | 20.858896 | 34 | Covid |
708 | 2021-03-05T00:00:00Z | 2021 | March | Friday | 179 | 17.318436 | 31 | Covid |
709 | 2021-03-06T00:00:00Z | 2021 | March | Saturday | 304 | 9.539474 | 29 | Covid |
710 | 2021-03-07T00:00:00Z | 2021 | March | Sunday | 162 | 15.432099 | 25 | Covid |
711 | 2021-03-08T00:00:00Z | 2021 | March | Monday | 234 | 13.675214 | 32 | Covid |
712 | 2021-03-09T00:00:00Z | 2021 | March | Tuesday | 160 | 23.125000 | 37 | Covid |
713 | 2021-03-10T00:00:00Z | 2021 | March | Wednesday | 156 | 20.512821 | 32 | Covid |
714 | 2021-03-11T00:00:00Z | 2021 | March | Thursday | 553 | 7.233273 | 40 | Covid |
715 | 2021-03-12T00:00:00Z | 2021 | March | Friday | 253 | 14.624506 | 37 | Covid |
716 | 2021-03-13T00:00:00Z | 2021 | March | Saturday | 237 | 14.345992 | 34 | Covid |
717 | 2021-03-14T00:00:00Z | 2021 | March | Sunday | 147 | 20.408163 | 30 | Covid |
718 | 2021-03-15T00:00:00Z | 2021 | March | Monday | 154 | 18.831169 | 29 | Covid |
719 | 2021-03-16T00:00:00Z | 2021 | March | Tuesday | 154 | 21.428571 | 33 | Covid |
720 | 2021-03-17T00:00:00Z | 2021 | March | Wednesday | 141 | 21.985816 | 31 | Covid |
721 | 2021-03-18T00:00:00Z | 2021 | March | Thursday | 153 | 20.261438 | 31 | Covid |
722 | 2021-03-19T00:00:00Z | 2021 | March | Friday | 268 | 19.402985 | 52 | Covid |
723 | 2021-03-20T00:00:00Z | 2021 | March | Saturday | 658 | 6.382979 | 42 | Covid |
724 | 2021-03-21T00:00:00Z | 2021 | March | Sunday | 170 | 23.529412 | 40 | Covid |
725 | 2021-03-22T00:00:00Z | 2021 | March | Monday | 174 | 22.413793 | 39 | Covid |
726 | 2021-03-23T00:00:00Z | 2021 | March | Tuesday | 143 | 16.783217 | 24 | Covid |
727 | 2021-03-24T00:00:00Z | 2021 | March | Wednesday | 157 | 17.197452 | 27 | Covid |
728 | 2021-03-25T00:00:00Z | 2021 | March | Thursday | 165 | 25.454545 | 42 | Covid |
729 | 2021-03-26T00:00:00Z | 2021 | March | Friday | 573 | 6.108202 | 35 | Covid |
head(joins.2019)
head(leaves.2019)
head(comm.2019)
agg_joins.2019 = aggregate(joins.2019$new_members, list(joins.2019$month), sum)
colnames(agg_joins.2019) <- c("Months", "Total New Members")
agg_leaves.2019 = aggregate(leaves.2019$leavers, list(leaves.2019$month), sum)
colnames(agg_leaves.2019) <- c("Months", "Total Leavers")
agg_comm.2019 = aggregate(comm.2019$total_communicated, list(comm.2019$month), sum)
colnames(agg_comm.2019) <- c("Months", "Total Communicated")
interval_start_timestamp | year | month | day | new_members | pct_communicated | pct_opened_channels | year_type | |
---|---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> | <fct> | |
1 | 2019-03-29T00:00:00Z | 2019 | March | Friday | 2 | 50.00000 | 50.00000 | Normal |
2 | 2019-03-30T00:00:00Z | 2019 | March | Saturday | 6 | 16.66667 | 33.33333 | Normal |
3 | 2019-03-31T00:00:00Z | 2019 | March | Sunday | 8 | 25.00000 | 37.50000 | Normal |
4 | 2019-04-01T00:00:00Z | 2019 | April | Monday | 9 | 44.44444 | 33.33333 | Normal |
5 | 2019-04-02T00:00:00Z | 2019 | April | Tuesday | 2 | 50.00000 | 100.00000 | Normal |
6 | 2019-04-03T00:00:00Z | 2019 | April | Wednesday | 0 | NA | NA | Normal |
interval_start_timestamp | year | month | day | days_in_guild | leavers | year_type | |
---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <fct> | <int> | <fct> | |
1 | 2019-03-29T00:00:00Z | 2019 | March | Friday | 'Members for 1 month+' | 1 | Normal |
2 | 2019-03-30T00:00:00Z | 2019 | March | Saturday | 'Members for 1 month+' | 1 | Normal |
3 | 2019-03-30T00:00:00Z | 2019 | March | Saturday | 'Members for < 1 month' | 1 | Normal |
4 | 2019-03-31T00:00:00Z | 2019 | March | Sunday | 'Members for 1 month+' | 2 | Normal |
5 | 2019-03-31T00:00:00Z | 2019 | March | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 1 | Normal |
6 | 2019-04-01T00:00:00Z | 2019 | April | Monday | 'Members for 1 month+' | 4 | Normal |
interval_start_timestamp | year | month | day | visitors | pct_communicated | total_communicated | year_type | |
---|---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> | <fct> | |
1 | 2019-03-29T00:00:00Z | 2019 | March | Friday | 206 | 25.72816 | 53 | Normal |
2 | 2019-03-30T00:00:00Z | 2019 | March | Saturday | 184 | 20.65217 | 38 | Normal |
3 | 2019-03-31T00:00:00Z | 2019 | March | Sunday | 185 | 24.32432 | 45 | Normal |
4 | 2019-04-01T00:00:00Z | 2019 | April | Monday | 328 | 22.86585 | 75 | Normal |
5 | 2019-04-02T00:00:00Z | 2019 | April | Tuesday | 143 | 33.56643 | 48 | Normal |
6 | 2019-04-03T00:00:00Z | 2019 | April | Wednesday | 271 | 16.60517 | 45 | Normal |
joins.2020
leaves.2020
comm.2020
agg_joins.2020 = aggregate(joins.2020$new_members, list(joins.2020$month), sum)
colnames(agg_joins.2020) <- c("Months", "Total New Members")
agg_leaves.2020 = aggregate(leaves.2020$leavers, list(leaves.2020$month), sum)
colnames(agg_leaves.2020) <- c("Months", "Total Leavers")
agg_comm.2020 = aggregate(comm.2020$total_communicated, list(comm.2020$month), sum)
colnames(agg_comm.2020) <- c("Months", "Total Communicated")
interval_start_timestamp | year | month | day | new_members | pct_communicated | pct_opened_channels | year_type | |
---|---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> | <fct> | |
279 | 2020-01-01T00:00:00Z | 2020 | January | Wednesday | 0 | NA | NA | Covid |
280 | 2020-01-02T00:00:00Z | 2020 | January | Thursday | 1 | 0.00000 | 100.00000 | Covid |
281 | 2020-01-03T00:00:00Z | 2020 | January | Friday | 2 | 0.00000 | 50.00000 | Covid |
282 | 2020-01-04T00:00:00Z | 2020 | January | Saturday | 0 | NA | NA | Covid |
283 | 2020-01-05T00:00:00Z | 2020 | January | Sunday | 0 | NA | NA | Covid |
284 | 2020-01-06T00:00:00Z | 2020 | January | Monday | 3 | 0.00000 | 0.00000 | Covid |
285 | 2020-01-07T00:00:00Z | 2020 | January | Tuesday | 1 | 0.00000 | 100.00000 | Covid |
286 | 2020-01-08T00:00:00Z | 2020 | January | Wednesday | 2 | 0.00000 | 50.00000 | Covid |
287 | 2020-01-09T00:00:00Z | 2020 | January | Thursday | 3 | 33.33333 | 33.33333 | Covid |
288 | 2020-01-10T00:00:00Z | 2020 | January | Friday | 2 | 0.00000 | 0.00000 | Covid |
289 | 2020-01-11T00:00:00Z | 2020 | January | Saturday | 0 | NA | NA | Covid |
290 | 2020-01-12T00:00:00Z | 2020 | January | Sunday | 2 | 0.00000 | 100.00000 | Covid |
291 | 2020-01-13T00:00:00Z | 2020 | January | Monday | 2 | 100.00000 | 100.00000 | Covid |
292 | 2020-01-14T00:00:00Z | 2020 | January | Tuesday | 7 | 14.28571 | 57.14286 | Covid |
293 | 2020-01-15T00:00:00Z | 2020 | January | Wednesday | 4 | 0.00000 | 25.00000 | Covid |
294 | 2020-01-16T00:00:00Z | 2020 | January | Thursday | 3 | 33.33333 | 100.00000 | Covid |
295 | 2020-01-17T00:00:00Z | 2020 | January | Friday | 1 | 0.00000 | 0.00000 | Covid |
296 | 2020-01-18T00:00:00Z | 2020 | January | Saturday | 3 | 0.00000 | 100.00000 | Covid |
297 | 2020-01-19T00:00:00Z | 2020 | January | Sunday | 2 | 0.00000 | 50.00000 | Covid |
298 | 2020-01-20T00:00:00Z | 2020 | January | Monday | 2 | 50.00000 | 100.00000 | Covid |
299 | 2020-01-21T00:00:00Z | 2020 | January | Tuesday | 4 | 25.00000 | 75.00000 | Covid |
300 | 2020-01-22T00:00:00Z | 2020 | January | Wednesday | 3 | 0.00000 | 0.00000 | Covid |
301 | 2020-01-23T00:00:00Z | 2020 | January | Thursday | 19 | 15.78947 | 21.05263 | Covid |
302 | 2020-01-24T00:00:00Z | 2020 | January | Friday | 0 | NA | NA | Covid |
303 | 2020-01-25T00:00:00Z | 2020 | January | Saturday | 3 | 33.33333 | 33.33333 | Covid |
304 | 2020-01-26T00:00:00Z | 2020 | January | Sunday | 3 | 0.00000 | 100.00000 | Covid |
305 | 2020-01-27T00:00:00Z | 2020 | January | Monday | 3 | 0.00000 | 66.66667 | Covid |
306 | 2020-01-28T00:00:00Z | 2020 | January | Tuesday | 2 | 0.00000 | 100.00000 | Covid |
307 | 2020-01-29T00:00:00Z | 2020 | January | Wednesday | 5 | 40.00000 | 80.00000 | Covid |
308 | 2020-01-30T00:00:00Z | 2020 | January | Thursday | 1 | 0.00000 | 100.00000 | Covid |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
615 | 2020-12-02T00:00:00Z | 2020 | December | Wednesday | 2 | 50.00000 | 100.00000 | Covid |
616 | 2020-12-03T00:00:00Z | 2020 | December | Thursday | 2 | 0.00000 | 50.00000 | Covid |
617 | 2020-12-04T00:00:00Z | 2020 | December | Friday | 5 | 40.00000 | 80.00000 | Covid |
618 | 2020-12-05T00:00:00Z | 2020 | December | Saturday | 4 | 25.00000 | 25.00000 | Covid |
619 | 2020-12-06T00:00:00Z | 2020 | December | Sunday | 3 | 0.00000 | 0.00000 | Covid |
620 | 2020-12-07T00:00:00Z | 2020 | December | Monday | 1 | 0.00000 | 100.00000 | Covid |
621 | 2020-12-08T00:00:00Z | 2020 | December | Tuesday | 1 | 0.00000 | 100.00000 | Covid |
622 | 2020-12-09T00:00:00Z | 2020 | December | Wednesday | 1 | 0.00000 | 0.00000 | Covid |
623 | 2020-12-10T00:00:00Z | 2020 | December | Thursday | 1 | 0.00000 | 100.00000 | Covid |
624 | 2020-12-11T00:00:00Z | 2020 | December | Friday | 1 | 0.00000 | 100.00000 | Covid |
625 | 2020-12-12T00:00:00Z | 2020 | December | Saturday | 3 | 0.00000 | 66.66667 | Covid |
626 | 2020-12-13T00:00:00Z | 2020 | December | Sunday | 5 | 0.00000 | 20.00000 | Covid |
627 | 2020-12-14T00:00:00Z | 2020 | December | Monday | 3 | 0.00000 | 66.66667 | Covid |
628 | 2020-12-15T00:00:00Z | 2020 | December | Tuesday | 2 | 50.00000 | 100.00000 | Covid |
629 | 2020-12-16T00:00:00Z | 2020 | December | Wednesday | 4 | 50.00000 | 75.00000 | Covid |
630 | 2020-12-17T00:00:00Z | 2020 | December | Thursday | 0 | NA | NA | Covid |
631 | 2020-12-18T00:00:00Z | 2020 | December | Friday | 2 | 50.00000 | 50.00000 | Covid |
632 | 2020-12-19T00:00:00Z | 2020 | December | Saturday | 0 | NA | NA | Covid |
633 | 2020-12-20T00:00:00Z | 2020 | December | Sunday | 9 | 11.11111 | 55.55556 | Covid |
634 | 2020-12-21T00:00:00Z | 2020 | December | Monday | 2 | 50.00000 | 50.00000 | Covid |
635 | 2020-12-22T00:00:00Z | 2020 | December | Tuesday | 3 | 0.00000 | 33.33333 | Covid |
636 | 2020-12-23T00:00:00Z | 2020 | December | Wednesday | 0 | NA | NA | Covid |
637 | 2020-12-24T00:00:00Z | 2020 | December | Thursday | 0 | NA | NA | Covid |
638 | 2020-12-25T00:00:00Z | 2020 | December | Friday | 2 | 0.00000 | 0.00000 | Covid |
639 | 2020-12-26T00:00:00Z | 2020 | December | Saturday | 3 | 33.33333 | 100.00000 | Covid |
640 | 2020-12-27T00:00:00Z | 2020 | December | Sunday | 0 | NA | NA | Covid |
641 | 2020-12-28T00:00:00Z | 2020 | December | Monday | 1 | 0.00000 | 0.00000 | Covid |
642 | 2020-12-29T00:00:00Z | 2020 | December | Tuesday | 3 | 0.00000 | 33.33333 | Covid |
643 | 2020-12-30T00:00:00Z | 2020 | December | Wednesday | 1 | 0.00000 | 0.00000 | Covid |
644 | 2020-12-31T00:00:00Z | 2020 | December | Thursday | 3 | 0.00000 | 33.33333 | Covid |
interval_start_timestamp | year | month | day | days_in_guild | leavers | year_type | |
---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <fct> | <int> | <fct> | |
402 | 2020-01-01T00:00:00Z | 2020 | January | Wednesday | 'Members for 1 month+' | 0 | Covid |
403 | 2020-01-02T00:00:00Z | 2020 | January | Thursday | 'Members for 1 month+' | 0 | Covid |
404 | 2020-01-03T00:00:00Z | 2020 | January | Friday | 'Members for 1 month+' | 2 | Covid |
405 | 2020-01-03T00:00:00Z | 2020 | January | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 1 | Covid |
406 | 2020-01-04T00:00:00Z | 2020 | January | Saturday | 'Members for 1 month+' | 2 | Covid |
407 | 2020-01-04T00:00:00Z | 2020 | January | Saturday | 'Members for < 1 month' | 1 | Covid |
408 | 2020-01-05T00:00:00Z | 2020 | January | Sunday | 'Members for 1 month+' | 1 | Covid |
409 | 2020-01-06T00:00:00Z | 2020 | January | <span style=white-space:pre-wrap>Monday </span> | 'Members for < 1 month' | 1 | Covid |
410 | 2020-01-07T00:00:00Z | 2020 | January | Tuesday | 'Members for 1 month+' | 3 | Covid |
411 | 2020-01-08T00:00:00Z | 2020 | January | Wednesday | 'Members for 1 month+' | 1 | Covid |
412 | 2020-01-08T00:00:00Z | 2020 | January | Wednesday | 'Members for < 1 month' | 1 | Covid |
413 | 2020-01-09T00:00:00Z | 2020 | January | Thursday | 'Members for 1 month+' | 2 | Covid |
414 | 2020-01-09T00:00:00Z | 2020 | January | Thursday | 'Members for < 1 month' | 1 | Covid |
415 | 2020-01-10T00:00:00Z | 2020 | January | Friday | 'Members for 1 month+' | 2 | Covid |
416 | 2020-01-11T00:00:00Z | 2020 | January | Saturday | 'Members for 1 month+' | 0 | Covid |
417 | 2020-01-12T00:00:00Z | 2020 | January | Sunday | 'Members for 1 month+' | 2 | Covid |
418 | 2020-01-13T00:00:00Z | 2020 | January | Monday | 'Members for 1 month+' | 4 | Covid |
419 | 2020-01-14T00:00:00Z | 2020 | January | Tuesday | 'Members for 1 month+' | 3 | Covid |
420 | 2020-01-14T00:00:00Z | 2020 | January | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Covid |
421 | 2020-01-15T00:00:00Z | 2020 | January | Wednesday | 'Members for < 1 month' | 1 | Covid |
422 | 2020-01-16T00:00:00Z | 2020 | January | Thursday | 'Members for 1 month+' | 3 | Covid |
423 | 2020-01-16T00:00:00Z | 2020 | January | Thursday | 'Members for < 1 month' | 1 | Covid |
424 | 2020-01-17T00:00:00Z | 2020 | January | Friday | 'Members for 1 month+' | 2 | Covid |
425 | 2020-01-17T00:00:00Z | 2020 | January | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 1 | Covid |
426 | 2020-01-18T00:00:00Z | 2020 | January | Saturday | 'Members for 1 month+' | 2 | Covid |
427 | 2020-01-19T00:00:00Z | 2020 | January | Sunday | 'Members for 1 month+' | 2 | Covid |
428 | 2020-01-20T00:00:00Z | 2020 | January | Monday | 'Members for 1 month+' | 0 | Covid |
429 | 2020-01-21T00:00:00Z | 2020 | January | Tuesday | 'Members for 1 month+' | 7 | Covid |
430 | 2020-01-22T00:00:00Z | 2020 | January | Wednesday | 'Members for 1 month+' | 3 | Covid |
431 | 2020-01-23T00:00:00Z | 2020 | January | Thursday | 'Members for 1 month+' | 1 | Covid |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
940 | 2020-12-11T00:00:00Z | 2020 | December | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 1 | Covid |
941 | 2020-12-12T00:00:00Z | 2020 | December | Saturday | 'Members for 1 month+' | 1 | Covid |
942 | 2020-12-12T00:00:00Z | 2020 | December | Saturday | 'Members for < 1 month' | 1 | Covid |
943 | 2020-12-13T00:00:00Z | 2020 | December | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 2 | Covid |
944 | 2020-12-14T00:00:00Z | 2020 | December | Monday | 'Members for 1 month+' | 2 | Covid |
945 | 2020-12-14T00:00:00Z | 2020 | December | <span style=white-space:pre-wrap>Monday </span> | 'Members for < 1 month' | 1 | Covid |
946 | 2020-12-15T00:00:00Z | 2020 | December | Tuesday | 'Members for 1 month+' | 0 | Covid |
947 | 2020-12-16T00:00:00Z | 2020 | December | Wednesday | 'Members for 1 month+' | 1 | Covid |
948 | 2020-12-16T00:00:00Z | 2020 | December | Wednesday | 'Members for < 1 month' | 1 | Covid |
949 | 2020-12-17T00:00:00Z | 2020 | December | Thursday | 'Members for 1 month+' | 2 | Covid |
950 | 2020-12-18T00:00:00Z | 2020 | December | Friday | 'Members for 1 month+' | 0 | Covid |
951 | 2020-12-19T00:00:00Z | 2020 | December | Saturday | 'Members for 1 month+' | 2 | Covid |
952 | 2020-12-19T00:00:00Z | 2020 | December | Saturday | 'Members for < 1 month' | 1 | Covid |
953 | 2020-12-20T00:00:00Z | 2020 | December | Sunday | 'Members for 1 month+' | 7 | Covid |
954 | 2020-12-20T00:00:00Z | 2020 | December | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 2 | Covid |
955 | 2020-12-21T00:00:00Z | 2020 | December | Monday | 'Members for 1 month+' | 1 | Covid |
956 | 2020-12-22T00:00:00Z | 2020 | December | Tuesday | 'Members for 1 month+' | 1 | Covid |
957 | 2020-12-22T00:00:00Z | 2020 | December | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Covid |
958 | 2020-12-23T00:00:00Z | 2020 | December | Wednesday | 'Members for 1 month+' | 3 | Covid |
959 | 2020-12-24T00:00:00Z | 2020 | December | Thursday | 'Members for 1 month+' | 0 | Covid |
960 | 2020-12-25T00:00:00Z | 2020 | December | Friday | 'Members for 1 month+' | 7 | Covid |
961 | 2020-12-25T00:00:00Z | 2020 | December | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 2 | Covid |
962 | 2020-12-26T00:00:00Z | 2020 | December | Saturday | 'Members for 1 month+' | 1 | Covid |
963 | 2020-12-26T00:00:00Z | 2020 | December | Saturday | 'Members for < 1 month' | 1 | Covid |
964 | 2020-12-27T00:00:00Z | 2020 | December | Sunday | 'Members for 1 month+' | 4 | Covid |
965 | 2020-12-28T00:00:00Z | 2020 | December | Monday | 'Members for 1 month+' | 2 | Covid |
966 | 2020-12-29T00:00:00Z | 2020 | December | Tuesday | 'Members for 1 month+' | 3 | Covid |
967 | 2020-12-29T00:00:00Z | 2020 | December | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Covid |
968 | 2020-12-30T00:00:00Z | 2020 | December | Wednesday | 'Members for 1 month+' | 4 | Covid |
969 | 2020-12-31T00:00:00Z | 2020 | December | Thursday | 'Members for 1 month+' | 2 | Covid |
interval_start_timestamp | year | month | day | visitors | pct_communicated | total_communicated | year_type | |
---|---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> | <fct> | |
279 | 2020-01-01T00:00:00Z | 2020 | January | Wednesday | 106 | 25.471698 | 27 | Covid |
280 | 2020-01-02T00:00:00Z | 2020 | January | Thursday | 105 | 22.857143 | 24 | Covid |
281 | 2020-01-03T00:00:00Z | 2020 | January | Friday | 104 | 25.000000 | 26 | Covid |
282 | 2020-01-04T00:00:00Z | 2020 | January | Saturday | 103 | 26.213592 | 27 | Covid |
283 | 2020-01-05T00:00:00Z | 2020 | January | Sunday | 93 | 23.655914 | 22 | Covid |
284 | 2020-01-06T00:00:00Z | 2020 | January | Monday | 102 | 17.647059 | 18 | Covid |
285 | 2020-01-07T00:00:00Z | 2020 | January | Tuesday | 101 | 26.732673 | 27 | Covid |
286 | 2020-01-08T00:00:00Z | 2020 | January | Wednesday | 109 | 26.605505 | 29 | Covid |
287 | 2020-01-09T00:00:00Z | 2020 | January | Thursday | 110 | 24.545455 | 27 | Covid |
288 | 2020-01-10T00:00:00Z | 2020 | January | Friday | 101 | 19.801980 | 20 | Covid |
289 | 2020-01-11T00:00:00Z | 2020 | January | Saturday | 96 | 27.083333 | 26 | Covid |
290 | 2020-01-12T00:00:00Z | 2020 | January | Sunday | 121 | 27.272727 | 33 | Covid |
291 | 2020-01-13T00:00:00Z | 2020 | January | Monday | 114 | 22.807018 | 26 | Covid |
292 | 2020-01-14T00:00:00Z | 2020 | January | Tuesday | 112 | 29.464286 | 33 | Covid |
293 | 2020-01-15T00:00:00Z | 2020 | January | Wednesday | 117 | 29.059829 | 34 | Covid |
294 | 2020-01-16T00:00:00Z | 2020 | January | Thursday | 134 | 35.820896 | 48 | Covid |
295 | 2020-01-17T00:00:00Z | 2020 | January | Friday | 124 | 28.225806 | 35 | Covid |
296 | 2020-01-18T00:00:00Z | 2020 | January | Saturday | 392 | 7.142857 | 28 | Covid |
297 | 2020-01-19T00:00:00Z | 2020 | January | Sunday | 391 | 5.882353 | 23 | Covid |
298 | 2020-01-20T00:00:00Z | 2020 | January | Monday | 171 | 21.052632 | 36 | Covid |
299 | 2020-01-21T00:00:00Z | 2020 | January | Tuesday | 433 | 8.775982 | 38 | Covid |
300 | 2020-01-22T00:00:00Z | 2020 | January | Wednesday | 242 | 18.595041 | 45 | Covid |
301 | 2020-01-23T00:00:00Z | 2020 | January | Thursday | 192 | 29.166667 | 56 | Covid |
302 | 2020-01-24T00:00:00Z | 2020 | January | Friday | 248 | 20.564516 | 51 | Covid |
303 | 2020-01-25T00:00:00Z | 2020 | January | Saturday | 410 | 14.390244 | 59 | Covid |
304 | 2020-01-26T00:00:00Z | 2020 | January | Sunday | 191 | 14.659686 | 28 | Covid |
305 | 2020-01-27T00:00:00Z | 2020 | January | Monday | 154 | 25.324675 | 39 | Covid |
306 | 2020-01-28T00:00:00Z | 2020 | January | Tuesday | 166 | 25.903614 | 43 | Covid |
307 | 2020-01-29T00:00:00Z | 2020 | January | Wednesday | 505 | 12.871287 | 65 | Covid |
308 | 2020-01-30T00:00:00Z | 2020 | January | Thursday | 444 | 10.360360 | 46 | Covid |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
615 | 2020-12-02T00:00:00Z | 2020 | December | Wednesday | 159 | 16.981132 | 27 | Covid |
616 | 2020-12-03T00:00:00Z | 2020 | December | Thursday | 266 | 14.285714 | 38 | Covid |
617 | 2020-12-04T00:00:00Z | 2020 | December | Friday | 193 | 21.761658 | 42 | Covid |
618 | 2020-12-05T00:00:00Z | 2020 | December | Saturday | 157 | 26.114650 | 41 | Covid |
619 | 2020-12-06T00:00:00Z | 2020 | December | Sunday | 151 | 18.543046 | 28 | Covid |
620 | 2020-12-07T00:00:00Z | 2020 | December | Monday | 150 | 18.000000 | 27 | Covid |
621 | 2020-12-08T00:00:00Z | 2020 | December | Tuesday | 546 | 5.677656 | 31 | Covid |
622 | 2020-12-09T00:00:00Z | 2020 | December | Wednesday | 157 | 15.286624 | 24 | Covid |
623 | 2020-12-10T00:00:00Z | 2020 | December | Thursday | 135 | 22.962963 | 31 | Covid |
624 | 2020-12-11T00:00:00Z | 2020 | December | Friday | 167 | 17.964072 | 30 | Covid |
625 | 2020-12-12T00:00:00Z | 2020 | December | Saturday | 250 | 11.200000 | 28 | Covid |
626 | 2020-12-13T00:00:00Z | 2020 | December | Sunday | 137 | 16.788321 | 23 | Covid |
627 | 2020-12-14T00:00:00Z | 2020 | December | Monday | 120 | 23.333333 | 28 | Covid |
628 | 2020-12-15T00:00:00Z | 2020 | December | Tuesday | 126 | 24.603175 | 31 | Covid |
629 | 2020-12-16T00:00:00Z | 2020 | December | Wednesday | 242 | 17.768595 | 43 | Covid |
630 | 2020-12-17T00:00:00Z | 2020 | December | Thursday | 168 | 22.619048 | 38 | Covid |
631 | 2020-12-18T00:00:00Z | 2020 | December | Friday | 138 | 13.043478 | 18 | Covid |
632 | 2020-12-19T00:00:00Z | 2020 | December | Saturday | 263 | 9.125475 | 24 | Covid |
633 | 2020-12-20T00:00:00Z | 2020 | December | Sunday | 258 | 9.689922 | 25 | Covid |
634 | 2020-12-21T00:00:00Z | 2020 | December | Monday | 130 | 13.076923 | 17 | Covid |
635 | 2020-12-22T00:00:00Z | 2020 | December | Tuesday | 136 | 13.235294 | 18 | Covid |
636 | 2020-12-23T00:00:00Z | 2020 | December | Wednesday | 120 | 16.666667 | 20 | Covid |
637 | 2020-12-24T00:00:00Z | 2020 | December | Thursday | 107 | 26.168224 | 28 | Covid |
638 | 2020-12-25T00:00:00Z | 2020 | December | Friday | 550 | 3.818182 | 21 | Covid |
639 | 2020-12-26T00:00:00Z | 2020 | December | Saturday | 149 | 12.751678 | 19 | Covid |
640 | 2020-12-27T00:00:00Z | 2020 | December | Sunday | 141 | 14.893617 | 21 | Covid |
641 | 2020-12-28T00:00:00Z | 2020 | December | Monday | 116 | 22.413793 | 26 | Covid |
642 | 2020-12-29T00:00:00Z | 2020 | December | Tuesday | 114 | 26.315789 | 30 | Covid |
643 | 2020-12-30T00:00:00Z | 2020 | December | Wednesday | 125 | 18.400000 | 23 | Covid |
644 | 2020-12-31T00:00:00Z | 2020 | December | Thursday | 156 | 21.794872 | 34 | Covid |
joins.2021
leaves.2021
comm.2021
agg_joins.2021 = aggregate(joins.2021$new_members, list(joins.2021$month), sum)
colnames(agg_joins.2021) <- c("Months", "Total New Members")
agg_leaves.2021 = aggregate(leaves.2021$leavers, list(leaves.2021$month), sum)
colnames(agg_leaves.2021) <- c("Months", "Total Leavers")
agg_comm.2021 = aggregate(comm.2021$total_communicated, list(comm.2021$month), sum)
colnames(agg_comm.2021) <- c("Months", "Total Communicated")
interval_start_timestamp | year | month | day | new_members | pct_communicated | pct_opened_channels | year_type | |
---|---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> | <fct> | |
645 | 2021-01-01T00:00:00Z | 2021 | January | Friday | 5 | 20.00000 | 40.00000 | Covid |
646 | 2021-01-02T00:00:00Z | 2021 | January | Saturday | 2 | 0.00000 | 100.00000 | Covid |
647 | 2021-01-03T00:00:00Z | 2021 | January | Sunday | 2 | 0.00000 | 50.00000 | Covid |
648 | 2021-01-04T00:00:00Z | 2021 | January | Monday | 0 | NA | NA | Covid |
649 | 2021-01-05T00:00:00Z | 2021 | January | Tuesday | 2 | 0.00000 | 50.00000 | Covid |
650 | 2021-01-06T00:00:00Z | 2021 | January | Wednesday | 1 | 0.00000 | 100.00000 | Covid |
651 | 2021-01-07T00:00:00Z | 2021 | January | Thursday | 2 | 50.00000 | 50.00000 | Covid |
652 | 2021-01-08T00:00:00Z | 2021 | January | Friday | 16 | 31.25000 | 68.75000 | Covid |
653 | 2021-01-09T00:00:00Z | 2021 | January | Saturday | 3 | 0.00000 | 0.00000 | Covid |
654 | 2021-01-10T00:00:00Z | 2021 | January | Sunday | 3 | 33.33333 | 66.66667 | Covid |
655 | 2021-01-11T00:00:00Z | 2021 | January | Monday | 2 | 0.00000 | 50.00000 | Covid |
656 | 2021-01-12T00:00:00Z | 2021 | January | Tuesday | 2 | 0.00000 | 50.00000 | Covid |
657 | 2021-01-13T00:00:00Z | 2021 | January | Wednesday | 4 | 0.00000 | 75.00000 | Covid |
658 | 2021-01-14T00:00:00Z | 2021 | January | Thursday | 1 | 0.00000 | 100.00000 | Covid |
659 | 2021-01-15T00:00:00Z | 2021 | January | Friday | 5 | 80.00000 | 100.00000 | Covid |
660 | 2021-01-16T00:00:00Z | 2021 | January | Saturday | 2 | 0.00000 | 50.00000 | Covid |
661 | 2021-01-17T00:00:00Z | 2021 | January | Sunday | 2 | 0.00000 | 100.00000 | Covid |
662 | 2021-01-18T00:00:00Z | 2021 | January | Monday | 3 | 66.66667 | 100.00000 | Covid |
663 | 2021-01-19T00:00:00Z | 2021 | January | Tuesday | 1 | 0.00000 | 0.00000 | Covid |
664 | 2021-01-20T00:00:00Z | 2021 | January | Wednesday | 2 | 50.00000 | 50.00000 | Covid |
665 | 2021-01-21T00:00:00Z | 2021 | January | Thursday | 8 | 0.00000 | 25.00000 | Covid |
666 | 2021-01-22T00:00:00Z | 2021 | January | Friday | 1 | 0.00000 | 100.00000 | Covid |
667 | 2021-01-23T00:00:00Z | 2021 | January | Saturday | 1 | 0.00000 | 100.00000 | Covid |
668 | 2021-01-24T00:00:00Z | 2021 | January | Sunday | 4 | 0.00000 | 75.00000 | Covid |
669 | 2021-01-25T00:00:00Z | 2021 | January | Monday | 14 | 21.42857 | 57.14286 | Covid |
670 | 2021-01-26T00:00:00Z | 2021 | January | Tuesday | 2 | 0.00000 | 50.00000 | Covid |
671 | 2021-01-27T00:00:00Z | 2021 | January | Wednesday | 6 | 33.33333 | 83.33333 | Covid |
672 | 2021-01-28T00:00:00Z | 2021 | January | Thursday | 5 | 0.00000 | 20.00000 | Covid |
673 | 2021-01-29T00:00:00Z | 2021 | January | Friday | 6 | 16.66667 | 66.66667 | Covid |
674 | 2021-01-30T00:00:00Z | 2021 | January | Saturday | 2 | 50.00000 | 100.00000 | Covid |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
700 | 2021-02-25T00:00:00Z | 2021 | February | Thursday | 1 | 0.00000 | 100.00000 | Covid |
701 | 2021-02-26T00:00:00Z | 2021 | February | Friday | 5 | 40.00000 | 100.00000 | Covid |
702 | 2021-02-27T00:00:00Z | 2021 | February | Saturday | 8 | 12.50000 | 100.00000 | Covid |
703 | 2021-02-28T00:00:00Z | 2021 | February | Sunday | 5 | 20.00000 | 100.00000 | Covid |
704 | 2021-03-01T00:00:00Z | 2021 | March | Monday | 2 | 0.00000 | 50.00000 | Covid |
705 | 2021-03-02T00:00:00Z | 2021 | March | Tuesday | 6 | 16.66667 | 16.66667 | Covid |
706 | 2021-03-03T00:00:00Z | 2021 | March | Wednesday | 5 | 0.00000 | 40.00000 | Covid |
707 | 2021-03-04T00:00:00Z | 2021 | March | Thursday | 8 | 0.00000 | 62.50000 | Covid |
708 | 2021-03-05T00:00:00Z | 2021 | March | Friday | 3 | 33.33333 | 33.33333 | Covid |
709 | 2021-03-06T00:00:00Z | 2021 | March | Saturday | 3 | 0.00000 | 66.66667 | Covid |
710 | 2021-03-07T00:00:00Z | 2021 | March | Sunday | 3 | 0.00000 | 33.33333 | Covid |
711 | 2021-03-08T00:00:00Z | 2021 | March | Monday | 7 | 14.28571 | 42.85714 | Covid |
712 | 2021-03-09T00:00:00Z | 2021 | March | Tuesday | 7 | 0.00000 | 57.14286 | Covid |
713 | 2021-03-10T00:00:00Z | 2021 | March | Wednesday | 5 | 0.00000 | 40.00000 | Covid |
714 | 2021-03-11T00:00:00Z | 2021 | March | Thursday | 1 | 0.00000 | 100.00000 | Covid |
715 | 2021-03-12T00:00:00Z | 2021 | March | Friday | 11 | 18.18182 | 45.45455 | Covid |
716 | 2021-03-13T00:00:00Z | 2021 | March | Saturday | 4 | 0.00000 | 50.00000 | Covid |
717 | 2021-03-14T00:00:00Z | 2021 | March | Sunday | 1 | 0.00000 | 0.00000 | Covid |
718 | 2021-03-15T00:00:00Z | 2021 | March | Monday | 1 | 0.00000 | 0.00000 | Covid |
719 | 2021-03-16T00:00:00Z | 2021 | March | Tuesday | 6 | 0.00000 | 83.33333 | Covid |
720 | 2021-03-17T00:00:00Z | 2021 | March | Wednesday | 7 | 0.00000 | 71.42857 | Covid |
721 | 2021-03-18T00:00:00Z | 2021 | March | Thursday | 1 | 0.00000 | 0.00000 | Covid |
722 | 2021-03-19T00:00:00Z | 2021 | March | Friday | 5 | 0.00000 | 80.00000 | Covid |
723 | 2021-03-20T00:00:00Z | 2021 | March | Saturday | 2 | 0.00000 | 0.00000 | Covid |
724 | 2021-03-21T00:00:00Z | 2021 | March | Sunday | 6 | 33.33333 | 33.33333 | Covid |
725 | 2021-03-22T00:00:00Z | 2021 | March | Monday | 5 | 20.00000 | 60.00000 | Covid |
726 | 2021-03-23T00:00:00Z | 2021 | March | Tuesday | 1 | 0.00000 | 0.00000 | Covid |
727 | 2021-03-24T00:00:00Z | 2021 | March | Wednesday | 4 | 0.00000 | 50.00000 | Covid |
728 | 2021-03-25T00:00:00Z | 2021 | March | Thursday | 1 | 0.00000 | 0.00000 | Covid |
729 | 2021-03-26T00:00:00Z | 2021 | March | Friday | 4 | NA | NA | Covid |
interval_start_timestamp | year | month | day | days_in_guild | leavers | year_type | |
---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <fct> | <int> | <fct> | |
970 | 2021-01-01T00:00:00Z | 2021 | January | Friday | 'Members for 1 month+' | 4 | Covid |
971 | 2021-01-01T00:00:00Z | 2021 | January | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 2 | Covid |
972 | 2021-01-02T00:00:00Z | 2021 | January | Saturday | 'Members for 1 month+' | 2 | Covid |
973 | 2021-01-02T00:00:00Z | 2021 | January | Saturday | 'Members for < 1 month' | 2 | Covid |
974 | 2021-01-03T00:00:00Z | 2021 | January | Sunday | 'Members for 1 month+' | 1 | Covid |
975 | 2021-01-03T00:00:00Z | 2021 | January | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 1 | Covid |
976 | 2021-01-04T00:00:00Z | 2021 | January | Monday | 'Members for 1 month+' | 2 | Covid |
977 | 2021-01-05T00:00:00Z | 2021 | January | Tuesday | 'Members for 1 month+' | 4 | Covid |
978 | 2021-01-06T00:00:00Z | 2021 | January | Wednesday | 'Members for 1 month+' | 2 | Covid |
979 | 2021-01-07T00:00:00Z | 2021 | January | Thursday | 'Members for 1 month+' | 4 | Covid |
980 | 2021-01-07T00:00:00Z | 2021 | January | Thursday | 'Members for < 1 month' | 1 | Covid |
981 | 2021-01-08T00:00:00Z | 2021 | January | Friday | 'Members for 1 month+' | 5 | Covid |
982 | 2021-01-08T00:00:00Z | 2021 | January | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 3 | Covid |
983 | 2021-01-09T00:00:00Z | 2021 | January | Saturday | 'Members for 1 month+' | 2 | Covid |
984 | 2021-01-09T00:00:00Z | 2021 | January | Saturday | 'Members for < 1 month' | 2 | Covid |
985 | 2021-01-10T00:00:00Z | 2021 | January | Sunday | 'Members for 1 month+' | 1 | Covid |
986 | 2021-01-11T00:00:00Z | 2021 | January | Monday | 'Members for 1 month+' | 2 | Covid |
987 | 2021-01-12T00:00:00Z | 2021 | January | Tuesday | 'Members for 1 month+' | 1 | Covid |
988 | 2021-01-13T00:00:00Z | 2021 | January | Wednesday | 'Members for 1 month+' | 3 | Covid |
989 | 2021-01-13T00:00:00Z | 2021 | January | Wednesday | 'Members for < 1 month' | 1 | Covid |
990 | 2021-01-14T00:00:00Z | 2021 | January | Thursday | 'Members for 1 month+' | 2 | Covid |
991 | 2021-01-15T00:00:00Z | 2021 | January | Friday | 'Members for 1 month+' | 2 | Covid |
992 | 2021-01-16T00:00:00Z | 2021 | January | Saturday | 'Members for 1 month+' | 4 | Covid |
993 | 2021-01-17T00:00:00Z | 2021 | January | Sunday | 'Members for 1 month+' | 0 | Covid |
994 | 2021-01-18T00:00:00Z | 2021 | January | <span style=white-space:pre-wrap>Monday </span> | 'Members for < 1 month' | 1 | Covid |
995 | 2021-01-19T00:00:00Z | 2021 | January | Tuesday | 'Members for 1 month+' | 3 | Covid |
996 | 2021-01-19T00:00:00Z | 2021 | January | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Covid |
997 | 2021-01-20T00:00:00Z | 2021 | January | Wednesday | 'Members for 1 month+' | 3 | Covid |
998 | 2021-01-20T00:00:00Z | 2021 | January | Wednesday | 'Members for < 1 month' | 1 | Covid |
999 | 2021-01-21T00:00:00Z | 2021 | January | Thursday | 'Members for 1 month+' | 1 | Covid |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
1075 | 2021-03-09T00:00:00Z | 2021 | March | Tuesday | 'Members for 1 month+' | 2 | Covid |
1076 | 2021-03-09T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Covid |
1077 | 2021-03-10T00:00:00Z | 2021 | March | Wednesday | 'Members for 1 month+' | 2 | Covid |
1078 | 2021-03-10T00:00:00Z | 2021 | March | Wednesday | 'Members for < 1 month' | 3 | Covid |
1079 | 2021-03-11T00:00:00Z | 2021 | March | Thursday | 'Members for 1 month+' | 2 | Covid |
1080 | 2021-03-12T00:00:00Z | 2021 | March | Friday | 'Members for 1 month+' | 1 | Covid |
1081 | 2021-03-12T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 5 | Covid |
1082 | 2021-03-13T00:00:00Z | 2021 | March | Saturday | 'Members for < 1 month' | 1 | Covid |
1083 | 2021-03-14T00:00:00Z | 2021 | March | Sunday | 'Members for 1 month+' | 1 | Covid |
1084 | 2021-03-14T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 1 | Covid |
1085 | 2021-03-15T00:00:00Z | 2021 | March | Monday | 'Members for 1 month+' | 2 | Covid |
1086 | 2021-03-16T00:00:00Z | 2021 | March | Tuesday | 'Members for 1 month+' | 1 | Covid |
1087 | 2021-03-16T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 3 | Covid |
1088 | 2021-03-17T00:00:00Z | 2021 | March | Wednesday | 'Members for 1 month+' | 4 | Covid |
1089 | 2021-03-17T00:00:00Z | 2021 | March | Wednesday | 'Members for < 1 month' | 2 | Covid |
1090 | 2021-03-18T00:00:00Z | 2021 | March | Thursday | 'Members for < 1 month' | 1 | Covid |
1091 | 2021-03-19T00:00:00Z | 2021 | March | Friday | 'Members for 1 month+' | 2 | Covid |
1092 | 2021-03-19T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 2 | Covid |
1093 | 2021-03-20T00:00:00Z | 2021 | March | Saturday | 'Members for 1 month+' | 5 | Covid |
1094 | 2021-03-20T00:00:00Z | 2021 | March | Saturday | 'Members for < 1 month' | 1 | Covid |
1095 | 2021-03-21T00:00:00Z | 2021 | March | Sunday | 'Members for 1 month+' | 1 | Covid |
1096 | 2021-03-21T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 3 | Covid |
1097 | 2021-03-22T00:00:00Z | 2021 | March | Monday | 'Members for 1 month+' | 1 | Covid |
1098 | 2021-03-23T00:00:00Z | 2021 | March | Tuesday | 'Members for 1 month+' | 3 | Covid |
1099 | 2021-03-23T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Covid |
1100 | 2021-03-24T00:00:00Z | 2021 | March | Wednesday | 'Members for 1 month+' | 0 | Covid |
1101 | 2021-03-25T00:00:00Z | 2021 | March | Thursday | 'Members for 1 month+' | 2 | Covid |
1102 | 2021-03-25T00:00:00Z | 2021 | March | Thursday | 'Members for < 1 month' | 1 | Covid |
1103 | 2021-03-26T00:00:00Z | 2021 | March | Friday | 'Members for 1 month+' | 3 | Covid |
1104 | 2021-03-26T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 1 | Covid |
interval_start_timestamp | year | month | day | visitors | pct_communicated | total_communicated | year_type | |
---|---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> | <fct> | |
645 | 2021-01-01T00:00:00Z | 2021 | January | Friday | 312 | 9.294872 | 29 | Covid |
646 | 2021-01-02T00:00:00Z | 2021 | January | Saturday | 174 | 17.241379 | 30 | Covid |
647 | 2021-01-03T00:00:00Z | 2021 | January | Sunday | 132 | 18.939394 | 25 | Covid |
648 | 2021-01-04T00:00:00Z | 2021 | January | Monday | 112 | 21.428571 | 24 | Covid |
649 | 2021-01-05T00:00:00Z | 2021 | January | Tuesday | 144 | 12.500000 | 18 | Covid |
650 | 2021-01-06T00:00:00Z | 2021 | January | Wednesday | 368 | 7.065217 | 26 | Covid |
651 | 2021-01-07T00:00:00Z | 2021 | January | Thursday | 315 | 13.015873 | 41 | Covid |
652 | 2021-01-08T00:00:00Z | 2021 | January | Friday | 274 | 16.788321 | 46 | Covid |
653 | 2021-01-09T00:00:00Z | 2021 | January | Saturday | 248 | 10.483871 | 26 | Covid |
654 | 2021-01-10T00:00:00Z | 2021 | January | Sunday | 149 | 18.791946 | 28 | Covid |
655 | 2021-01-11T00:00:00Z | 2021 | January | Monday | 225 | 16.888889 | 38 | Covid |
656 | 2021-01-12T00:00:00Z | 2021 | January | Tuesday | 150 | 17.333333 | 26 | Covid |
657 | 2021-01-13T00:00:00Z | 2021 | January | Wednesday | 152 | 18.421053 | 28 | Covid |
658 | 2021-01-14T00:00:00Z | 2021 | January | Thursday | 144 | 15.277778 | 22 | Covid |
659 | 2021-01-15T00:00:00Z | 2021 | January | Friday | 148 | 27.027027 | 40 | Covid |
660 | 2021-01-16T00:00:00Z | 2021 | January | Saturday | 123 | 19.512195 | 24 | Covid |
661 | 2021-01-17T00:00:00Z | 2021 | January | Sunday | 129 | 13.178295 | 17 | Covid |
662 | 2021-01-18T00:00:00Z | 2021 | January | Monday | 136 | 23.529412 | 32 | Covid |
663 | 2021-01-19T00:00:00Z | 2021 | January | Tuesday | 133 | 20.300752 | 27 | Covid |
664 | 2021-01-20T00:00:00Z | 2021 | January | Wednesday | 136 | 19.852941 | 27 | Covid |
665 | 2021-01-21T00:00:00Z | 2021 | January | Thursday | 127 | 23.622047 | 30 | Covid |
666 | 2021-01-22T00:00:00Z | 2021 | January | Friday | 192 | 19.270833 | 37 | Covid |
667 | 2021-01-23T00:00:00Z | 2021 | January | Saturday | 139 | 19.424460 | 27 | Covid |
668 | 2021-01-24T00:00:00Z | 2021 | January | Sunday | 153 | 15.686275 | 24 | Covid |
669 | 2021-01-25T00:00:00Z | 2021 | January | Monday | 276 | 15.217391 | 42 | Covid |
670 | 2021-01-26T00:00:00Z | 2021 | January | Tuesday | 184 | 19.021739 | 35 | Covid |
671 | 2021-01-27T00:00:00Z | 2021 | January | Wednesday | 182 | 24.725275 | 45 | Covid |
672 | 2021-01-28T00:00:00Z | 2021 | January | Thursday | 605 | 6.280992 | 38 | Covid |
673 | 2021-01-29T00:00:00Z | 2021 | January | Friday | 261 | 13.409962 | 35 | Covid |
674 | 2021-01-30T00:00:00Z | 2021 | January | Saturday | 201 | 20.398010 | 41 | Covid |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
700 | 2021-02-25T00:00:00Z | 2021 | February | Thursday | 172 | 23.255814 | 40 | Covid |
701 | 2021-02-26T00:00:00Z | 2021 | February | Friday | 167 | 19.161677 | 32 | Covid |
702 | 2021-02-27T00:00:00Z | 2021 | February | Saturday | 208 | 20.673077 | 43 | Covid |
703 | 2021-02-28T00:00:00Z | 2021 | February | Sunday | 167 | 17.964072 | 30 | Covid |
704 | 2021-03-01T00:00:00Z | 2021 | March | Monday | 164 | 18.292683 | 30 | Covid |
705 | 2021-03-02T00:00:00Z | 2021 | March | Tuesday | 199 | 15.075377 | 30 | Covid |
706 | 2021-03-03T00:00:00Z | 2021 | March | Wednesday | 163 | 18.404908 | 30 | Covid |
707 | 2021-03-04T00:00:00Z | 2021 | March | Thursday | 163 | 20.858896 | 34 | Covid |
708 | 2021-03-05T00:00:00Z | 2021 | March | Friday | 179 | 17.318436 | 31 | Covid |
709 | 2021-03-06T00:00:00Z | 2021 | March | Saturday | 304 | 9.539474 | 29 | Covid |
710 | 2021-03-07T00:00:00Z | 2021 | March | Sunday | 162 | 15.432099 | 25 | Covid |
711 | 2021-03-08T00:00:00Z | 2021 | March | Monday | 234 | 13.675214 | 32 | Covid |
712 | 2021-03-09T00:00:00Z | 2021 | March | Tuesday | 160 | 23.125000 | 37 | Covid |
713 | 2021-03-10T00:00:00Z | 2021 | March | Wednesday | 156 | 20.512821 | 32 | Covid |
714 | 2021-03-11T00:00:00Z | 2021 | March | Thursday | 553 | 7.233273 | 40 | Covid |
715 | 2021-03-12T00:00:00Z | 2021 | March | Friday | 253 | 14.624506 | 37 | Covid |
716 | 2021-03-13T00:00:00Z | 2021 | March | Saturday | 237 | 14.345992 | 34 | Covid |
717 | 2021-03-14T00:00:00Z | 2021 | March | Sunday | 147 | 20.408163 | 30 | Covid |
718 | 2021-03-15T00:00:00Z | 2021 | March | Monday | 154 | 18.831169 | 29 | Covid |
719 | 2021-03-16T00:00:00Z | 2021 | March | Tuesday | 154 | 21.428571 | 33 | Covid |
720 | 2021-03-17T00:00:00Z | 2021 | March | Wednesday | 141 | 21.985816 | 31 | Covid |
721 | 2021-03-18T00:00:00Z | 2021 | March | Thursday | 153 | 20.261438 | 31 | Covid |
722 | 2021-03-19T00:00:00Z | 2021 | March | Friday | 268 | 19.402985 | 52 | Covid |
723 | 2021-03-20T00:00:00Z | 2021 | March | Saturday | 658 | 6.382979 | 42 | Covid |
724 | 2021-03-21T00:00:00Z | 2021 | March | Sunday | 170 | 23.529412 | 40 | Covid |
725 | 2021-03-22T00:00:00Z | 2021 | March | Monday | 174 | 22.413793 | 39 | Covid |
726 | 2021-03-23T00:00:00Z | 2021 | March | Tuesday | 143 | 16.783217 | 24 | Covid |
727 | 2021-03-24T00:00:00Z | 2021 | March | Wednesday | 157 | 17.197452 | 27 | Covid |
728 | 2021-03-25T00:00:00Z | 2021 | March | Thursday | 165 | 25.454545 | 42 | Covid |
729 | 2021-03-26T00:00:00Z | 2021 | March | Friday | 573 | 6.108202 | 35 | Covid |
communicators
median_comm = aggregate(communicators$visitors, list(communicators$month), sum)
median_comm[order(median_comm$x),]
interval_start_timestamp | year | month | day | visitors | pct_communicated | total_communicated | year_type |
---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> | <fct> |
2019-03-29T00:00:00Z | 2019 | March | Friday | 206 | 25.72816 | 53 | Normal |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 184 | 20.65217 | 38 | Normal |
2019-03-31T00:00:00Z | 2019 | March | Sunday | 185 | 24.32432 | 45 | Normal |
2019-04-01T00:00:00Z | 2019 | April | Monday | 328 | 22.86585 | 75 | Normal |
2019-04-02T00:00:00Z | 2019 | April | Tuesday | 143 | 33.56643 | 48 | Normal |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 271 | 16.60517 | 45 | Normal |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 381 | 13.38583 | 51 | Normal |
2019-04-05T00:00:00Z | 2019 | April | Friday | 190 | 24.73684 | 47 | Normal |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 163 | 26.99387 | 44 | Normal |
2019-04-07T00:00:00Z | 2019 | April | Sunday | 159 | 31.44654 | 50 | Normal |
2019-04-08T00:00:00Z | 2019 | April | Monday | 163 | 25.76687 | 42 | Normal |
2019-04-09T00:00:00Z | 2019 | April | Tuesday | 148 | 31.08108 | 46 | Normal |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 163 | 30.67485 | 50 | Normal |
2019-04-11T00:00:00Z | 2019 | April | Thursday | 139 | 38.12950 | 53 | Normal |
2019-04-12T00:00:00Z | 2019 | April | Friday | 155 | 29.67742 | 46 | Normal |
2019-04-13T00:00:00Z | 2019 | April | Saturday | 143 | 30.06993 | 43 | Normal |
2019-04-14T00:00:00Z | 2019 | April | Sunday | 140 | 28.57143 | 40 | Normal |
2019-04-15T00:00:00Z | 2019 | April | Monday | 170 | 29.41176 | 50 | Normal |
2019-04-16T00:00:00Z | 2019 | April | Tuesday | 150 | 40.66667 | 61 | Normal |
2019-04-17T00:00:00Z | 2019 | April | Wednesday | 153 | 34.64052 | 53 | Normal |
2019-04-18T00:00:00Z | 2019 | April | Thursday | 167 | 43.71257 | 73 | Normal |
2019-04-19T00:00:00Z | 2019 | April | Friday | 162 | 33.95062 | 55 | Normal |
2019-04-20T00:00:00Z | 2019 | April | Saturday | 337 | 15.13353 | 51 | Normal |
2019-04-21T00:00:00Z | 2019 | April | Sunday | 172 | 25.00000 | 43 | Normal |
2019-04-22T00:00:00Z | 2019 | April | Monday | 162 | 24.07407 | 39 | Normal |
2019-04-23T00:00:00Z | 2019 | April | Tuesday | 163 | 35.58282 | 58 | Normal |
2019-04-24T00:00:00Z | 2019 | April | Wednesday | 340 | 15.29412 | 52 | Normal |
2019-04-25T00:00:00Z | 2019 | April | Thursday | 196 | 26.53061 | 52 | Normal |
2019-04-26T00:00:00Z | 2019 | April | Friday | 371 | 16.98113 | 63 | Normal |
2019-04-27T00:00:00Z | 2019 | April | Saturday | 201 | 27.86070 | 56 | Normal |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00Z | 2021 | February | Thursday | 172 | 23.255814 | 40 | Covid |
2021-02-26T00:00:00Z | 2021 | February | Friday | 167 | 19.161677 | 32 | Covid |
2021-02-27T00:00:00Z | 2021 | February | Saturday | 208 | 20.673077 | 43 | Covid |
2021-02-28T00:00:00Z | 2021 | February | Sunday | 167 | 17.964072 | 30 | Covid |
2021-03-01T00:00:00Z | 2021 | March | Monday | 164 | 18.292683 | 30 | Covid |
2021-03-02T00:00:00Z | 2021 | March | Tuesday | 199 | 15.075377 | 30 | Covid |
2021-03-03T00:00:00Z | 2021 | March | Wednesday | 163 | 18.404908 | 30 | Covid |
2021-03-04T00:00:00Z | 2021 | March | Thursday | 163 | 20.858896 | 34 | Covid |
2021-03-05T00:00:00Z | 2021 | March | Friday | 179 | 17.318436 | 31 | Covid |
2021-03-06T00:00:00Z | 2021 | March | Saturday | 304 | 9.539474 | 29 | Covid |
2021-03-07T00:00:00Z | 2021 | March | Sunday | 162 | 15.432099 | 25 | Covid |
2021-03-08T00:00:00Z | 2021 | March | Monday | 234 | 13.675214 | 32 | Covid |
2021-03-09T00:00:00Z | 2021 | March | Tuesday | 160 | 23.125000 | 37 | Covid |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 156 | 20.512821 | 32 | Covid |
2021-03-11T00:00:00Z | 2021 | March | Thursday | 553 | 7.233273 | 40 | Covid |
2021-03-12T00:00:00Z | 2021 | March | Friday | 253 | 14.624506 | 37 | Covid |
2021-03-13T00:00:00Z | 2021 | March | Saturday | 237 | 14.345992 | 34 | Covid |
2021-03-14T00:00:00Z | 2021 | March | Sunday | 147 | 20.408163 | 30 | Covid |
2021-03-15T00:00:00Z | 2021 | March | Monday | 154 | 18.831169 | 29 | Covid |
2021-03-16T00:00:00Z | 2021 | March | Tuesday | 154 | 21.428571 | 33 | Covid |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 141 | 21.985816 | 31 | Covid |
2021-03-18T00:00:00Z | 2021 | March | Thursday | 153 | 20.261438 | 31 | Covid |
2021-03-19T00:00:00Z | 2021 | March | Friday | 268 | 19.402985 | 52 | Covid |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 658 | 6.382979 | 42 | Covid |
2021-03-21T00:00:00Z | 2021 | March | Sunday | 170 | 23.529412 | 40 | Covid |
2021-03-22T00:00:00Z | 2021 | March | Monday | 174 | 22.413793 | 39 | Covid |
2021-03-23T00:00:00Z | 2021 | March | Tuesday | 143 | 16.783217 | 24 | Covid |
2021-03-24T00:00:00Z | 2021 | March | Wednesday | 157 | 17.197452 | 27 | Covid |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 165 | 25.454545 | 42 | Covid |
2021-03-26T00:00:00Z | 2021 | March | Friday | 573 | 6.108202 | 35 | Covid |
Group.1 | x | |
---|---|---|
<fct> | <int> | |
6 | June | 10342 |
5 | May | 10814 |
4 | April | 11595 |
12 | December | 11671 |
1 | January | 12220 |
7 | July | 12230 |
2 | February | 12236 |
3 | March | 12848 |
8 | August | 15664 |
11 | November | 16734 |
10 | October | 17617 |
9 | September | 22230 |
As mentioned in the subsetting by year section, upon reading some examples for aggregating in R, I found that there was a method to aggregate by multiple columns. The following article "Aggregate in R" was particularly helpful as it had sample code with useful outputs. The second option of using R linear model notation is a bit more intuitive than the first suggestion.
aggregate(df_2$weight, by = list(df_2$feed, df_2$cat_var), FUN = sum)
# Equivalent to:
aggregate(weight ~ feed + cat_var, data = df_2, FUN = sum)
head(joins)
agg_joins = aggregate(new_members ~ month + year, data = joins, FUN = sum)
head(agg_joins)
interval_start_timestamp | year | month | day | new_members | pct_communicated | pct_opened_channels | year_type | |
---|---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> | <fct> | |
1 | 2019-03-29T00:00:00Z | 2019 | March | Friday | 2 | 50.00000 | 50.00000 | Normal |
2 | 2019-03-30T00:00:00Z | 2019 | March | Saturday | 6 | 16.66667 | 33.33333 | Normal |
3 | 2019-03-31T00:00:00Z | 2019 | March | Sunday | 8 | 25.00000 | 37.50000 | Normal |
4 | 2019-04-01T00:00:00Z | 2019 | April | Monday | 9 | 44.44444 | 33.33333 | Normal |
5 | 2019-04-02T00:00:00Z | 2019 | April | Tuesday | 2 | 50.00000 | 100.00000 | Normal |
6 | 2019-04-03T00:00:00Z | 2019 | April | Wednesday | 0 | NA | NA | Normal |
month | year | new_members | |
---|---|---|---|
<fct> | <fct> | <int> | |
1 | March | 2019 | 16 |
2 | April | 2019 | 69 |
3 | May | 2019 | 54 |
4 | June | 2019 | 54 |
5 | July | 2019 | 37 |
6 | August | 2019 | 256 |
leaves
agg_leaves = aggregate(leavers ~ month + year, data = leaves, FUN = sum)
agg_leaves
interval_start_timestamp | year | month | day | days_in_guild | leavers | year_type |
---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <fct> | <int> | <fct> |
2019-03-29T00:00:00Z | 2019 | March | Friday | 'Members for 1 month+' | 1 | Normal |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 'Members for 1 month+' | 1 | Normal |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 'Members for < 1 month' | 1 | Normal |
2019-03-31T00:00:00Z | 2019 | March | Sunday | 'Members for 1 month+' | 2 | Normal |
2019-03-31T00:00:00Z | 2019 | March | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 1 | Normal |
2019-04-01T00:00:00Z | 2019 | April | Monday | 'Members for 1 month+' | 4 | Normal |
2019-04-02T00:00:00Z | 2019 | April | Tuesday | 'Members for 1 month+' | 1 | Normal |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 'Members for 1 month+' | 2 | Normal |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 'Members for < 1 month' | 2 | Normal |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 'Members for 1 month+' | 2 | Normal |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 'Members for < 1 month' | 2 | Normal |
2019-04-05T00:00:00Z | 2019 | April | Friday | 'Members for 1 month+' | 3 | Normal |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 'Members for 1 month+' | 1 | Normal |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 'Members for < 1 month' | 1 | Normal |
2019-04-07T00:00:00Z | 2019 | April | Sunday | 'Members for 1 month+' | 1 | Normal |
2019-04-07T00:00:00Z | 2019 | April | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 2 | Normal |
2019-04-08T00:00:00Z | 2019 | April | Monday | 'Members for 1 month+' | 1 | Normal |
2019-04-08T00:00:00Z | 2019 | April | <span style=white-space:pre-wrap>Monday </span> | 'Members for < 1 month' | 1 | Normal |
2019-04-09T00:00:00Z | 2019 | April | Tuesday | 'Members for 1 month+' | 1 | Normal |
2019-04-09T00:00:00Z | 2019 | April | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Normal |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 'Members for 1 month+' | 2 | Normal |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 'Members for < 1 month' | 1 | Normal |
2019-04-11T00:00:00Z | 2019 | April | Thursday | 'Members for 1 month+' | 0 | Normal |
2019-04-12T00:00:00Z | 2019 | April | Friday | 'Members for 1 month+' | 1 | Normal |
2019-04-13T00:00:00Z | 2019 | April | Saturday | 'Members for < 1 month' | 1 | Normal |
2019-04-14T00:00:00Z | 2019 | April | Sunday | 'Members for 1 month+' | 2 | Normal |
2019-04-15T00:00:00Z | 2019 | April | Monday | 'Members for 1 month+' | 1 | Normal |
2019-04-15T00:00:00Z | 2019 | April | <span style=white-space:pre-wrap>Monday </span> | 'Members for < 1 month' | 1 | Normal |
2019-04-16T00:00:00Z | 2019 | April | Tuesday | 'Members for 1 month+' | 3 | Normal |
2019-04-16T00:00:00Z | 2019 | April | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Normal |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-03-09T00:00:00Z | 2021 | March | Tuesday | 'Members for 1 month+' | 2 | Covid |
2021-03-09T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Covid |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 'Members for 1 month+' | 2 | Covid |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 'Members for < 1 month' | 3 | Covid |
2021-03-11T00:00:00Z | 2021 | March | Thursday | 'Members for 1 month+' | 2 | Covid |
2021-03-12T00:00:00Z | 2021 | March | Friday | 'Members for 1 month+' | 1 | Covid |
2021-03-12T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 5 | Covid |
2021-03-13T00:00:00Z | 2021 | March | Saturday | 'Members for < 1 month' | 1 | Covid |
2021-03-14T00:00:00Z | 2021 | March | Sunday | 'Members for 1 month+' | 1 | Covid |
2021-03-14T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 1 | Covid |
2021-03-15T00:00:00Z | 2021 | March | Monday | 'Members for 1 month+' | 2 | Covid |
2021-03-16T00:00:00Z | 2021 | March | Tuesday | 'Members for 1 month+' | 1 | Covid |
2021-03-16T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 3 | Covid |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 'Members for 1 month+' | 4 | Covid |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 'Members for < 1 month' | 2 | Covid |
2021-03-18T00:00:00Z | 2021 | March | Thursday | 'Members for < 1 month' | 1 | Covid |
2021-03-19T00:00:00Z | 2021 | March | Friday | 'Members for 1 month+' | 2 | Covid |
2021-03-19T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 2 | Covid |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 'Members for 1 month+' | 5 | Covid |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 'Members for < 1 month' | 1 | Covid |
2021-03-21T00:00:00Z | 2021 | March | Sunday | 'Members for 1 month+' | 1 | Covid |
2021-03-21T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 3 | Covid |
2021-03-22T00:00:00Z | 2021 | March | Monday | 'Members for 1 month+' | 1 | Covid |
2021-03-23T00:00:00Z | 2021 | March | Tuesday | 'Members for 1 month+' | 3 | Covid |
2021-03-23T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Covid |
2021-03-24T00:00:00Z | 2021 | March | Wednesday | 'Members for 1 month+' | 0 | Covid |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 'Members for 1 month+' | 2 | Covid |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 'Members for < 1 month' | 1 | Covid |
2021-03-26T00:00:00Z | 2021 | March | Friday | 'Members for 1 month+' | 3 | Covid |
2021-03-26T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 1 | Covid |
month | year | leavers |
---|---|---|
<fct> | <fct> | <int> |
March | 2019 | 6 |
April | 2019 | 75 |
May | 2019 | 54 |
June | 2019 | 45 |
July | 2019 | 47 |
August | 2019 | 66 |
September | 2019 | 90 |
October | 2019 | 60 |
November | 2019 | 118 |
December | 2019 | 43 |
January | 2020 | 66 |
February | 2020 | 82 |
March | 2020 | 73 |
April | 2020 | 95 |
May | 2020 | 72 |
June | 2020 | 82 |
July | 2020 | 90 |
August | 2020 | 127 |
September | 2020 | 132 |
October | 2020 | 100 |
November | 2020 | 91 |
December | 2020 | 83 |
January | 2021 | 93 |
February | 2021 | 88 |
March | 2021 | 78 |
leaves
agg_leaves = aggregate(leavers ~ month + year + days_in_guild, data = leaves, FUN = sum)
agg_leaves
interval_start_timestamp | year | month | day | days_in_guild | leavers | year_type |
---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <fct> | <int> | <fct> |
2019-03-29T00:00:00Z | 2019 | March | Friday | 'Members for 1 month+' | 1 | Normal |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 'Members for 1 month+' | 1 | Normal |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 'Members for < 1 month' | 1 | Normal |
2019-03-31T00:00:00Z | 2019 | March | Sunday | 'Members for 1 month+' | 2 | Normal |
2019-03-31T00:00:00Z | 2019 | March | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 1 | Normal |
2019-04-01T00:00:00Z | 2019 | April | Monday | 'Members for 1 month+' | 4 | Normal |
2019-04-02T00:00:00Z | 2019 | April | Tuesday | 'Members for 1 month+' | 1 | Normal |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 'Members for 1 month+' | 2 | Normal |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 'Members for < 1 month' | 2 | Normal |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 'Members for 1 month+' | 2 | Normal |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 'Members for < 1 month' | 2 | Normal |
2019-04-05T00:00:00Z | 2019 | April | Friday | 'Members for 1 month+' | 3 | Normal |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 'Members for 1 month+' | 1 | Normal |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 'Members for < 1 month' | 1 | Normal |
2019-04-07T00:00:00Z | 2019 | April | Sunday | 'Members for 1 month+' | 1 | Normal |
2019-04-07T00:00:00Z | 2019 | April | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 2 | Normal |
2019-04-08T00:00:00Z | 2019 | April | Monday | 'Members for 1 month+' | 1 | Normal |
2019-04-08T00:00:00Z | 2019 | April | <span style=white-space:pre-wrap>Monday </span> | 'Members for < 1 month' | 1 | Normal |
2019-04-09T00:00:00Z | 2019 | April | Tuesday | 'Members for 1 month+' | 1 | Normal |
2019-04-09T00:00:00Z | 2019 | April | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Normal |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 'Members for 1 month+' | 2 | Normal |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 'Members for < 1 month' | 1 | Normal |
2019-04-11T00:00:00Z | 2019 | April | Thursday | 'Members for 1 month+' | 0 | Normal |
2019-04-12T00:00:00Z | 2019 | April | Friday | 'Members for 1 month+' | 1 | Normal |
2019-04-13T00:00:00Z | 2019 | April | Saturday | 'Members for < 1 month' | 1 | Normal |
2019-04-14T00:00:00Z | 2019 | April | Sunday | 'Members for 1 month+' | 2 | Normal |
2019-04-15T00:00:00Z | 2019 | April | Monday | 'Members for 1 month+' | 1 | Normal |
2019-04-15T00:00:00Z | 2019 | April | <span style=white-space:pre-wrap>Monday </span> | 'Members for < 1 month' | 1 | Normal |
2019-04-16T00:00:00Z | 2019 | April | Tuesday | 'Members for 1 month+' | 3 | Normal |
2019-04-16T00:00:00Z | 2019 | April | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Normal |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-03-09T00:00:00Z | 2021 | March | Tuesday | 'Members for 1 month+' | 2 | Covid |
2021-03-09T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Covid |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 'Members for 1 month+' | 2 | Covid |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 'Members for < 1 month' | 3 | Covid |
2021-03-11T00:00:00Z | 2021 | March | Thursday | 'Members for 1 month+' | 2 | Covid |
2021-03-12T00:00:00Z | 2021 | March | Friday | 'Members for 1 month+' | 1 | Covid |
2021-03-12T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 5 | Covid |
2021-03-13T00:00:00Z | 2021 | March | Saturday | 'Members for < 1 month' | 1 | Covid |
2021-03-14T00:00:00Z | 2021 | March | Sunday | 'Members for 1 month+' | 1 | Covid |
2021-03-14T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 1 | Covid |
2021-03-15T00:00:00Z | 2021 | March | Monday | 'Members for 1 month+' | 2 | Covid |
2021-03-16T00:00:00Z | 2021 | March | Tuesday | 'Members for 1 month+' | 1 | Covid |
2021-03-16T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 3 | Covid |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 'Members for 1 month+' | 4 | Covid |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 'Members for < 1 month' | 2 | Covid |
2021-03-18T00:00:00Z | 2021 | March | Thursday | 'Members for < 1 month' | 1 | Covid |
2021-03-19T00:00:00Z | 2021 | March | Friday | 'Members for 1 month+' | 2 | Covid |
2021-03-19T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 2 | Covid |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 'Members for 1 month+' | 5 | Covid |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 'Members for < 1 month' | 1 | Covid |
2021-03-21T00:00:00Z | 2021 | March | Sunday | 'Members for 1 month+' | 1 | Covid |
2021-03-21T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 3 | Covid |
2021-03-22T00:00:00Z | 2021 | March | Monday | 'Members for 1 month+' | 1 | Covid |
2021-03-23T00:00:00Z | 2021 | March | Tuesday | 'Members for 1 month+' | 3 | Covid |
2021-03-23T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Covid |
2021-03-24T00:00:00Z | 2021 | March | Wednesday | 'Members for 1 month+' | 0 | Covid |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 'Members for 1 month+' | 2 | Covid |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 'Members for < 1 month' | 1 | Covid |
2021-03-26T00:00:00Z | 2021 | March | Friday | 'Members for 1 month+' | 3 | Covid |
2021-03-26T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 1 | Covid |
month | year | days_in_guild | leavers |
---|---|---|---|
<fct> | <fct> | <fct> | <int> |
<span style=white-space:pre-wrap>March </span> | 2019 | 'Members for < 1 month' | 2 |
<span style=white-space:pre-wrap>April </span> | 2019 | 'Members for < 1 month' | 27 |
<span style=white-space:pre-wrap>May </span> | 2019 | 'Members for < 1 month' | 18 |
<span style=white-space:pre-wrap>June </span> | 2019 | 'Members for < 1 month' | 12 |
<span style=white-space:pre-wrap>July </span> | 2019 | 'Members for < 1 month' | 11 |
<span style=white-space:pre-wrap>August </span> | 2019 | 'Members for < 1 month' | 23 |
September | 2019 | 'Members for < 1 month' | 34 |
<span style=white-space:pre-wrap>October </span> | 2019 | 'Members for < 1 month' | 31 |
November | 2019 | 'Members for < 1 month' | 65 |
December | 2019 | 'Members for < 1 month' | 7 |
<span style=white-space:pre-wrap>January </span> | 2020 | 'Members for < 1 month' | 17 |
February | 2020 | 'Members for < 1 month' | 32 |
<span style=white-space:pre-wrap>March </span> | 2020 | 'Members for < 1 month' | 20 |
<span style=white-space:pre-wrap>April </span> | 2020 | 'Members for < 1 month' | 20 |
<span style=white-space:pre-wrap>May </span> | 2020 | 'Members for < 1 month' | 16 |
<span style=white-space:pre-wrap>June </span> | 2020 | 'Members for < 1 month' | 28 |
<span style=white-space:pre-wrap>July </span> | 2020 | 'Members for < 1 month' | 28 |
<span style=white-space:pre-wrap>August </span> | 2020 | 'Members for < 1 month' | 61 |
September | 2020 | 'Members for < 1 month' | 68 |
<span style=white-space:pre-wrap>October </span> | 2020 | 'Members for < 1 month' | 42 |
November | 2020 | 'Members for < 1 month' | 35 |
December | 2020 | 'Members for < 1 month' | 20 |
<span style=white-space:pre-wrap>January </span> | 2021 | 'Members for < 1 month' | 26 |
February | 2021 | 'Members for < 1 month' | 40 |
<span style=white-space:pre-wrap>March </span> | 2021 | 'Members for < 1 month' | 32 |
March | 2019 | 'Members for 1 month+' | 4 |
April | 2019 | 'Members for 1 month+' | 48 |
May | 2019 | 'Members for 1 month+' | 36 |
June | 2019 | 'Members for 1 month+' | 33 |
July | 2019 | 'Members for 1 month+' | 36 |
August | 2019 | 'Members for 1 month+' | 43 |
September | 2019 | 'Members for 1 month+' | 56 |
October | 2019 | 'Members for 1 month+' | 29 |
November | 2019 | 'Members for 1 month+' | 53 |
December | 2019 | 'Members for 1 month+' | 36 |
January | 2020 | 'Members for 1 month+' | 49 |
February | 2020 | 'Members for 1 month+' | 50 |
March | 2020 | 'Members for 1 month+' | 53 |
April | 2020 | 'Members for 1 month+' | 75 |
May | 2020 | 'Members for 1 month+' | 56 |
June | 2020 | 'Members for 1 month+' | 54 |
July | 2020 | 'Members for 1 month+' | 62 |
August | 2020 | 'Members for 1 month+' | 66 |
September | 2020 | 'Members for 1 month+' | 64 |
October | 2020 | 'Members for 1 month+' | 58 |
November | 2020 | 'Members for 1 month+' | 56 |
December | 2020 | 'Members for 1 month+' | 63 |
January | 2021 | 'Members for 1 month+' | 67 |
February | 2021 | 'Members for 1 month+' | 48 |
March | 2021 | 'Members for 1 month+' | 46 |
I tried aggregating the various sources. Our group later realized we could get the same data from another file. So this ended up being unused.
sources
agg_sources = aggregate(discovery_joins + invites + vanity_joins ~ month + year, data = sources, FUN = sum)
agg_sources
interval_start_timestamp | year | month | day | discovery_joins | invites | vanity_joins | year_type |
---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <int> | <int> | <fct> |
2019-03-29T00:00:00Z | 2019 | March | Friday | 0 | 0 | 3 | Normal |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 0 | 0 | 7 | Normal |
2019-03-31T00:00:00Z | 2019 | March | Sunday | 0 | 0 | 8 | Normal |
2019-04-01T00:00:00Z | 2019 | April | Monday | 0 | 0 | 11 | Normal |
2019-04-02T00:00:00Z | 2019 | April | Tuesday | 0 | 0 | 2 | Normal |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 0 | 0 | 1 | Normal |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 0 | 0 | 3 | Normal |
2019-04-05T00:00:00Z | 2019 | April | Friday | 0 | 0 | 4 | Normal |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 0 | 0 | 3 | Normal |
2019-04-07T00:00:00Z | 2019 | April | Sunday | 0 | 0 | 2 | Normal |
2019-04-08T00:00:00Z | 2019 | April | Monday | 0 | 0 | 9 | Normal |
2019-04-09T00:00:00Z | 2019 | April | Tuesday | 0 | 0 | 3 | Normal |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 0 | 0 | 1 | Normal |
2019-04-11T00:00:00Z | 2019 | April | Thursday | 0 | 0 | 2 | Normal |
2019-04-12T00:00:00Z | 2019 | April | Friday | 0 | 0 | 1 | Normal |
2019-04-13T00:00:00Z | 2019 | April | Saturday | 0 | 0 | 1 | Normal |
2019-04-14T00:00:00Z | 2019 | April | Sunday | 0 | 0 | 0 | Normal |
2019-04-15T00:00:00Z | 2019 | April | Monday | 0 | 0 | 0 | Normal |
2019-04-16T00:00:00Z | 2019 | April | Tuesday | 0 | 0 | 7 | Normal |
2019-04-17T00:00:00Z | 2019 | April | Wednesday | 0 | 0 | 5 | Normal |
2019-04-18T00:00:00Z | 2019 | April | Thursday | 0 | 0 | 6 | Normal |
2019-04-19T00:00:00Z | 2019 | April | Friday | 0 | 0 | 3 | Normal |
2019-04-20T00:00:00Z | 2019 | April | Saturday | 0 | 0 | 2 | Normal |
2019-04-21T00:00:00Z | 2019 | April | Sunday | 0 | 0 | 1 | Normal |
2019-04-22T00:00:00Z | 2019 | April | Monday | 0 | 0 | 1 | Normal |
2019-04-23T00:00:00Z | 2019 | April | Tuesday | 0 | 0 | 3 | Normal |
2019-04-24T00:00:00Z | 2019 | April | Wednesday | 0 | 0 | 3 | Normal |
2019-04-25T00:00:00Z | 2019 | April | Thursday | 0 | 0 | 3 | Normal |
2019-04-26T00:00:00Z | 2019 | April | Friday | 0 | 0 | 4 | Normal |
2019-04-27T00:00:00Z | 2019 | April | Saturday | 0 | 0 | 3 | Normal |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00Z | 2021 | February | Thursday | 0 | 0 | 1 | Covid |
2021-02-26T00:00:00Z | 2021 | February | Friday | 0 | 0 | 6 | Covid |
2021-02-27T00:00:00Z | 2021 | February | Saturday | 0 | 0 | 9 | Covid |
2021-02-28T00:00:00Z | 2021 | February | Sunday | 0 | 0 | 5 | Covid |
2021-03-01T00:00:00Z | 2021 | March | Monday | 0 | 0 | 3 | Covid |
2021-03-02T00:00:00Z | 2021 | March | Tuesday | 0 | 0 | 6 | Covid |
2021-03-03T00:00:00Z | 2021 | March | Wednesday | 0 | 0 | 5 | Covid |
2021-03-04T00:00:00Z | 2021 | March | Thursday | 0 | 0 | 8 | Covid |
2021-03-05T00:00:00Z | 2021 | March | Friday | 0 | 0 | 4 | Covid |
2021-03-06T00:00:00Z | 2021 | March | Saturday | 0 | 0 | 3 | Covid |
2021-03-07T00:00:00Z | 2021 | March | Sunday | 0 | 0 | 4 | Covid |
2021-03-08T00:00:00Z | 2021 | March | Monday | 0 | 0 | 7 | Covid |
2021-03-09T00:00:00Z | 2021 | March | Tuesday | 1 | 0 | 6 | Covid |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 0 | 0 | 5 | Covid |
2021-03-11T00:00:00Z | 2021 | March | Thursday | 0 | 0 | 2 | Covid |
2021-03-12T00:00:00Z | 2021 | March | Friday | 0 | 0 | 11 | Covid |
2021-03-13T00:00:00Z | 2021 | March | Saturday | 1 | 0 | 3 | Covid |
2021-03-14T00:00:00Z | 2021 | March | Sunday | 0 | 0 | 1 | Covid |
2021-03-15T00:00:00Z | 2021 | March | Monday | 0 | 0 | 2 | Covid |
2021-03-16T00:00:00Z | 2021 | March | Tuesday | 1 | 0 | 6 | Covid |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 1 | 0 | 9 | Covid |
2021-03-18T00:00:00Z | 2021 | March | Thursday | 0 | 0 | 1 | Covid |
2021-03-19T00:00:00Z | 2021 | March | Friday | 1 | 0 | 4 | Covid |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 0 | 0 | 2 | Covid |
2021-03-21T00:00:00Z | 2021 | March | Sunday | 0 | 0 | 7 | Covid |
2021-03-22T00:00:00Z | 2021 | March | Monday | 0 | 0 | 6 | Covid |
2021-03-23T00:00:00Z | 2021 | March | Tuesday | 0 | 0 | 1 | Covid |
2021-03-24T00:00:00Z | 2021 | March | Wednesday | 0 | 0 | 5 | Covid |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 0 | 0 | 2 | Covid |
2021-03-26T00:00:00Z | 2021 | March | Friday | 0 | 0 | 4 | Covid |
month | year | discovery_joins + invites + vanity_joins |
---|---|---|
<fct> | <fct> | <int> |
March | 2019 | 18 |
April | 2019 | 92 |
May | 2019 | 64 |
June | 2019 | 58 |
July | 2019 | 46 |
August | 2019 | 273 |
September | 2019 | 196 |
October | 2019 | 119 |
November | 2019 | 190 |
December | 2019 | 49 |
January | 2020 | 106 |
February | 2020 | 79 |
March | 2020 | 74 |
April | 2020 | 134 |
May | 2020 | 96 |
June | 2020 | 85 |
July | 2020 | 125 |
August | 2020 | 345 |
September | 2020 | 260 |
October | 2020 | 214 |
November | 2020 | 143 |
December | 2020 | 82 |
January | 2021 | 126 |
February | 2021 | 147 |
March | 2021 | 122 |
communicators
agg_comms = aggregate(total_communicated ~ month + year, data = communicators, FUN = sum)
agg_comms
interval_start_timestamp | year | month | day | visitors | pct_communicated | total_communicated | year_type |
---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> | <fct> |
2019-03-29T00:00:00Z | 2019 | March | Friday | 206 | 25.72816 | 53 | Normal |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 184 | 20.65217 | 38 | Normal |
2019-03-31T00:00:00Z | 2019 | March | Sunday | 185 | 24.32432 | 45 | Normal |
2019-04-01T00:00:00Z | 2019 | April | Monday | 328 | 22.86585 | 75 | Normal |
2019-04-02T00:00:00Z | 2019 | April | Tuesday | 143 | 33.56643 | 48 | Normal |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 271 | 16.60517 | 45 | Normal |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 381 | 13.38583 | 51 | Normal |
2019-04-05T00:00:00Z | 2019 | April | Friday | 190 | 24.73684 | 47 | Normal |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 163 | 26.99387 | 44 | Normal |
2019-04-07T00:00:00Z | 2019 | April | Sunday | 159 | 31.44654 | 50 | Normal |
2019-04-08T00:00:00Z | 2019 | April | Monday | 163 | 25.76687 | 42 | Normal |
2019-04-09T00:00:00Z | 2019 | April | Tuesday | 148 | 31.08108 | 46 | Normal |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 163 | 30.67485 | 50 | Normal |
2019-04-11T00:00:00Z | 2019 | April | Thursday | 139 | 38.12950 | 53 | Normal |
2019-04-12T00:00:00Z | 2019 | April | Friday | 155 | 29.67742 | 46 | Normal |
2019-04-13T00:00:00Z | 2019 | April | Saturday | 143 | 30.06993 | 43 | Normal |
2019-04-14T00:00:00Z | 2019 | April | Sunday | 140 | 28.57143 | 40 | Normal |
2019-04-15T00:00:00Z | 2019 | April | Monday | 170 | 29.41176 | 50 | Normal |
2019-04-16T00:00:00Z | 2019 | April | Tuesday | 150 | 40.66667 | 61 | Normal |
2019-04-17T00:00:00Z | 2019 | April | Wednesday | 153 | 34.64052 | 53 | Normal |
2019-04-18T00:00:00Z | 2019 | April | Thursday | 167 | 43.71257 | 73 | Normal |
2019-04-19T00:00:00Z | 2019 | April | Friday | 162 | 33.95062 | 55 | Normal |
2019-04-20T00:00:00Z | 2019 | April | Saturday | 337 | 15.13353 | 51 | Normal |
2019-04-21T00:00:00Z | 2019 | April | Sunday | 172 | 25.00000 | 43 | Normal |
2019-04-22T00:00:00Z | 2019 | April | Monday | 162 | 24.07407 | 39 | Normal |
2019-04-23T00:00:00Z | 2019 | April | Tuesday | 163 | 35.58282 | 58 | Normal |
2019-04-24T00:00:00Z | 2019 | April | Wednesday | 340 | 15.29412 | 52 | Normal |
2019-04-25T00:00:00Z | 2019 | April | Thursday | 196 | 26.53061 | 52 | Normal |
2019-04-26T00:00:00Z | 2019 | April | Friday | 371 | 16.98113 | 63 | Normal |
2019-04-27T00:00:00Z | 2019 | April | Saturday | 201 | 27.86070 | 56 | Normal |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00Z | 2021 | February | Thursday | 172 | 23.255814 | 40 | Covid |
2021-02-26T00:00:00Z | 2021 | February | Friday | 167 | 19.161677 | 32 | Covid |
2021-02-27T00:00:00Z | 2021 | February | Saturday | 208 | 20.673077 | 43 | Covid |
2021-02-28T00:00:00Z | 2021 | February | Sunday | 167 | 17.964072 | 30 | Covid |
2021-03-01T00:00:00Z | 2021 | March | Monday | 164 | 18.292683 | 30 | Covid |
2021-03-02T00:00:00Z | 2021 | March | Tuesday | 199 | 15.075377 | 30 | Covid |
2021-03-03T00:00:00Z | 2021 | March | Wednesday | 163 | 18.404908 | 30 | Covid |
2021-03-04T00:00:00Z | 2021 | March | Thursday | 163 | 20.858896 | 34 | Covid |
2021-03-05T00:00:00Z | 2021 | March | Friday | 179 | 17.318436 | 31 | Covid |
2021-03-06T00:00:00Z | 2021 | March | Saturday | 304 | 9.539474 | 29 | Covid |
2021-03-07T00:00:00Z | 2021 | March | Sunday | 162 | 15.432099 | 25 | Covid |
2021-03-08T00:00:00Z | 2021 | March | Monday | 234 | 13.675214 | 32 | Covid |
2021-03-09T00:00:00Z | 2021 | March | Tuesday | 160 | 23.125000 | 37 | Covid |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 156 | 20.512821 | 32 | Covid |
2021-03-11T00:00:00Z | 2021 | March | Thursday | 553 | 7.233273 | 40 | Covid |
2021-03-12T00:00:00Z | 2021 | March | Friday | 253 | 14.624506 | 37 | Covid |
2021-03-13T00:00:00Z | 2021 | March | Saturday | 237 | 14.345992 | 34 | Covid |
2021-03-14T00:00:00Z | 2021 | March | Sunday | 147 | 20.408163 | 30 | Covid |
2021-03-15T00:00:00Z | 2021 | March | Monday | 154 | 18.831169 | 29 | Covid |
2021-03-16T00:00:00Z | 2021 | March | Tuesday | 154 | 21.428571 | 33 | Covid |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 141 | 21.985816 | 31 | Covid |
2021-03-18T00:00:00Z | 2021 | March | Thursday | 153 | 20.261438 | 31 | Covid |
2021-03-19T00:00:00Z | 2021 | March | Friday | 268 | 19.402985 | 52 | Covid |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 658 | 6.382979 | 42 | Covid |
2021-03-21T00:00:00Z | 2021 | March | Sunday | 170 | 23.529412 | 40 | Covid |
2021-03-22T00:00:00Z | 2021 | March | Monday | 174 | 22.413793 | 39 | Covid |
2021-03-23T00:00:00Z | 2021 | March | Tuesday | 143 | 16.783217 | 24 | Covid |
2021-03-24T00:00:00Z | 2021 | March | Wednesday | 157 | 17.197452 | 27 | Covid |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 165 | 25.454545 | 42 | Covid |
2021-03-26T00:00:00Z | 2021 | March | Friday | 573 | 6.108202 | 35 | Covid |
month | year | total_communicated |
---|---|---|
<fct> | <fct> | <dbl> |
March | 2019 | 136 |
April | 2019 | 1531 |
May | 2019 | 1238 |
June | 2019 | 1094 |
July | 2019 | 1150 |
August | 2019 | 1760 |
September | 2019 | 2588 |
October | 2019 | 2168 |
November | 2019 | 1861 |
December | 2019 | 1184 |
January | 2020 | 1094 |
February | 2020 | 1232 |
March | 2020 | 1174 |
April | 2020 | 1186 |
May | 2020 | 1077 |
June | 2020 | 1139 |
July | 2020 | 1071 |
August | 2020 | 1859 |
September | 2020 | 2175 |
October | 2020 | 1602 |
November | 2020 | 1165 |
December | 2020 | 864 |
January | 2021 | 968 |
February | 2021 | 948 |
March | 2021 | 876 |
I realized that using R's base plots were not going to make the cut. I recall that when I was searching for graphing solutions on a different project, I found an appealing graph solution with ggplots. At the time I was using python, so ggplot wasn't a library supported. In another class, the professor introduced ggplots. I could have used excel to generate the plots, but I wanted a learning opportunity to try ggplot on something that wasn't homework or classwork. I knew I needed a stacked bar chart as I needed to compare the changes across the months and years.
After a search on the web, I found the following guide "How to Create and Customize Bar Plot Using ggplot2 Package in R- One Zero Blog" on the towards data science medium to be particularly helpful, as there was sample code with outputs. I used the sample code from section on bar labels on a stack bar plot as a base and made modifications to fit my data.
To make it easier for me to input the parameters and give me a sanity check for my graphs, I loaded all the aggregate data.
library(ggplot2)
head(joins)
head(agg_joins.2019)
head(agg_joins.2020)
head(agg_joins.2021)
head(agg_joins)
interval_start_timestamp | year | month | day | new_members | pct_communicated | pct_opened_channels | year_type | |
---|---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> | <fct> | |
1 | 2019-03-29T00:00:00Z | 2019 | March | Friday | 2 | 50.00000 | 50.00000 | Normal |
2 | 2019-03-30T00:00:00Z | 2019 | March | Saturday | 6 | 16.66667 | 33.33333 | Normal |
3 | 2019-03-31T00:00:00Z | 2019 | March | Sunday | 8 | 25.00000 | 37.50000 | Normal |
4 | 2019-04-01T00:00:00Z | 2019 | April | Monday | 9 | 44.44444 | 33.33333 | Normal |
5 | 2019-04-02T00:00:00Z | 2019 | April | Tuesday | 2 | 50.00000 | 100.00000 | Normal |
6 | 2019-04-03T00:00:00Z | 2019 | April | Wednesday | 0 | NA | NA | Normal |
Months | Total New Members | |
---|---|---|
<fct> | <int> | |
1 | March | 16 |
2 | April | 69 |
3 | May | 54 |
4 | June | 54 |
5 | July | 37 |
6 | August | 256 |
Months | Total New Members | |
---|---|---|
<fct> | <int> | |
1 | January | 86 |
2 | February | 61 |
3 | March | 63 |
4 | April | 123 |
5 | May | 84 |
6 | June | 74 |
Months | Total New Members | |
---|---|---|
<fct> | <int> | |
1 | January | 113 |
2 | February | 137 |
3 | March | 109 |
month | year | new_members | |
---|---|---|---|
<fct> | <fct> | <int> | |
1 | March | 2019 | 16 |
2 | April | 2019 | 69 |
3 | May | 2019 | 54 |
4 | June | 2019 | 54 |
5 | July | 2019 | 37 |
6 | August | 2019 | 256 |
I started by substituting the sample parameters with my own dataset. I quickly realized that the graph had some issues on the x axis. The month names were overlapping.
all_joins = ggplot(data = agg_joins, mapping = aes(x = month, y = new_members, fill = year)) + xlab("Month") + ylab("Total New Members") + geom_col()+
geom_text(aes(label=new_members), position = position_stack(vjust= 0.5),
colour = "black", size = 5)
all_joins = all_joins + labs(title = "New Member Joins Across the Year")
all_joins
After searching the web, I found a great stack overflow answer How to maintain size of ggplot with long labels that ultimately influenced the final graphs.
all_joins = ggplot(data = agg_joins, mapping = aes(x = month, y = new_members, fill = year)) + xlab("Month") + ylab("Total New Members") + geom_col()+
geom_text(aes(label=new_members), position = position_stack(vjust= 0.5),
colour = "black", size = 5) + coord_flip()
all_joins = all_joins + labs(title = "New Member Joins Across the Year")
all_joins
When I first made the graphs, the order of the x axis was backwards from a normal year. For the presentation I used the version above, but when I came back for the final report and final write up, I decided to search for a solution. I knew previously that coord_flip()
was the cause of the initial reversed order. Searching ggplot coord_flip() change order of x axis+change+order+of+x+axis&t=ffab&ia=web) found the answer I was looking for. The following answer from Reversed order after coord_flip in R was had the solution I was looking for. I learned that I could use a limits parameter to change the order, as passing scale_x_discrete()
with out any parameters wouldn't change my graph.
Ultimately this is the final version of the graph. For the report, I scaled the horizontal dimension to be 1920 and had the aspect ratio fixed.
all_joins = ggplot(data = agg_joins, mapping = aes(x = month, y = new_members, fill = year)) + xlab("Month") + ylab("Total New Members") + geom_col()+
geom_text(aes(label=new_members), position = position_stack(vjust= 0.5),
colour = "black", size = 5) + coord_flip() + scale_x_discrete(limits = rev(levels(agg_joins$month)))
all_joins = all_joins + labs(title = "New Member Joins Across the Year")
all_joins
I decided to also make a graph for leaves, but it was ultimately scrapped because our analysis was more focused in the new user changes. Perhaps we can return to analyze the leaves
leaves
agg_leaves.2019
agg_leaves.2020
agg_leaves.2021
agg_leaves
interval_start_timestamp | year | month | day | days_in_guild | leavers | year_type |
---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <fct> | <int> | <fct> |
2019-03-29T00:00:00Z | 2019 | March | Friday | 'Members for 1 month+' | 1 | Normal |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 'Members for 1 month+' | 1 | Normal |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 'Members for < 1 month' | 1 | Normal |
2019-03-31T00:00:00Z | 2019 | March | Sunday | 'Members for 1 month+' | 2 | Normal |
2019-03-31T00:00:00Z | 2019 | March | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 1 | Normal |
2019-04-01T00:00:00Z | 2019 | April | Monday | 'Members for 1 month+' | 4 | Normal |
2019-04-02T00:00:00Z | 2019 | April | Tuesday | 'Members for 1 month+' | 1 | Normal |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 'Members for 1 month+' | 2 | Normal |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 'Members for < 1 month' | 2 | Normal |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 'Members for 1 month+' | 2 | Normal |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 'Members for < 1 month' | 2 | Normal |
2019-04-05T00:00:00Z | 2019 | April | Friday | 'Members for 1 month+' | 3 | Normal |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 'Members for 1 month+' | 1 | Normal |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 'Members for < 1 month' | 1 | Normal |
2019-04-07T00:00:00Z | 2019 | April | Sunday | 'Members for 1 month+' | 1 | Normal |
2019-04-07T00:00:00Z | 2019 | April | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 2 | Normal |
2019-04-08T00:00:00Z | 2019 | April | Monday | 'Members for 1 month+' | 1 | Normal |
2019-04-08T00:00:00Z | 2019 | April | <span style=white-space:pre-wrap>Monday </span> | 'Members for < 1 month' | 1 | Normal |
2019-04-09T00:00:00Z | 2019 | April | Tuesday | 'Members for 1 month+' | 1 | Normal |
2019-04-09T00:00:00Z | 2019 | April | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Normal |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 'Members for 1 month+' | 2 | Normal |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 'Members for < 1 month' | 1 | Normal |
2019-04-11T00:00:00Z | 2019 | April | Thursday | 'Members for 1 month+' | 0 | Normal |
2019-04-12T00:00:00Z | 2019 | April | Friday | 'Members for 1 month+' | 1 | Normal |
2019-04-13T00:00:00Z | 2019 | April | Saturday | 'Members for < 1 month' | 1 | Normal |
2019-04-14T00:00:00Z | 2019 | April | Sunday | 'Members for 1 month+' | 2 | Normal |
2019-04-15T00:00:00Z | 2019 | April | Monday | 'Members for 1 month+' | 1 | Normal |
2019-04-15T00:00:00Z | 2019 | April | <span style=white-space:pre-wrap>Monday </span> | 'Members for < 1 month' | 1 | Normal |
2019-04-16T00:00:00Z | 2019 | April | Tuesday | 'Members for 1 month+' | 3 | Normal |
2019-04-16T00:00:00Z | 2019 | April | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Normal |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-03-09T00:00:00Z | 2021 | March | Tuesday | 'Members for 1 month+' | 2 | Covid |
2021-03-09T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Covid |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 'Members for 1 month+' | 2 | Covid |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 'Members for < 1 month' | 3 | Covid |
2021-03-11T00:00:00Z | 2021 | March | Thursday | 'Members for 1 month+' | 2 | Covid |
2021-03-12T00:00:00Z | 2021 | March | Friday | 'Members for 1 month+' | 1 | Covid |
2021-03-12T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 5 | Covid |
2021-03-13T00:00:00Z | 2021 | March | Saturday | 'Members for < 1 month' | 1 | Covid |
2021-03-14T00:00:00Z | 2021 | March | Sunday | 'Members for 1 month+' | 1 | Covid |
2021-03-14T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 1 | Covid |
2021-03-15T00:00:00Z | 2021 | March | Monday | 'Members for 1 month+' | 2 | Covid |
2021-03-16T00:00:00Z | 2021 | March | Tuesday | 'Members for 1 month+' | 1 | Covid |
2021-03-16T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 3 | Covid |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 'Members for 1 month+' | 4 | Covid |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 'Members for < 1 month' | 2 | Covid |
2021-03-18T00:00:00Z | 2021 | March | Thursday | 'Members for < 1 month' | 1 | Covid |
2021-03-19T00:00:00Z | 2021 | March | Friday | 'Members for 1 month+' | 2 | Covid |
2021-03-19T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 2 | Covid |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 'Members for 1 month+' | 5 | Covid |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 'Members for < 1 month' | 1 | Covid |
2021-03-21T00:00:00Z | 2021 | March | Sunday | 'Members for 1 month+' | 1 | Covid |
2021-03-21T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Sunday </span> | 'Members for < 1 month' | 3 | Covid |
2021-03-22T00:00:00Z | 2021 | March | Monday | 'Members for 1 month+' | 1 | Covid |
2021-03-23T00:00:00Z | 2021 | March | Tuesday | 'Members for 1 month+' | 3 | Covid |
2021-03-23T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Tuesday </span> | 'Members for < 1 month' | 1 | Covid |
2021-03-24T00:00:00Z | 2021 | March | Wednesday | 'Members for 1 month+' | 0 | Covid |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 'Members for 1 month+' | 2 | Covid |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 'Members for < 1 month' | 1 | Covid |
2021-03-26T00:00:00Z | 2021 | March | Friday | 'Members for 1 month+' | 3 | Covid |
2021-03-26T00:00:00Z | 2021 | March | <span style=white-space:pre-wrap>Friday </span> | 'Members for < 1 month' | 1 | Covid |
Months | Total Leavers |
---|---|
<fct> | <int> |
March | 6 |
April | 75 |
May | 54 |
June | 45 |
July | 47 |
August | 66 |
September | 90 |
October | 60 |
November | 118 |
December | 43 |
Months | Total Leavers |
---|---|
<fct> | <int> |
January | 66 |
February | 82 |
March | 73 |
April | 95 |
May | 72 |
June | 82 |
July | 90 |
August | 127 |
September | 132 |
October | 100 |
November | 91 |
December | 83 |
Months | Total Leavers |
---|---|
<fct> | <int> |
January | 93 |
February | 88 |
March | 78 |
month | year | leavers |
---|---|---|
<fct> | <fct> | <int> |
March | 2019 | 6 |
April | 2019 | 75 |
May | 2019 | 54 |
June | 2019 | 45 |
July | 2019 | 47 |
August | 2019 | 66 |
September | 2019 | 90 |
October | 2019 | 60 |
November | 2019 | 118 |
December | 2019 | 43 |
January | 2020 | 66 |
February | 2020 | 82 |
March | 2020 | 73 |
April | 2020 | 95 |
May | 2020 | 72 |
June | 2020 | 82 |
July | 2020 | 90 |
August | 2020 | 127 |
September | 2020 | 132 |
October | 2020 | 100 |
November | 2020 | 91 |
December | 2020 | 83 |
January | 2021 | 93 |
February | 2021 | 88 |
March | 2021 | 78 |
all_leaves = ggplot(data = agg_leaves, mapping = aes(x = month, y = leavers, fill = year)) + xlab("Month") + ylab("Total Leaves") + geom_col()+
geom_text(aes(label=leavers), position = position_stack(vjust= 0.5),
colour = "black", size = 5) + coord_flip() + scale_x_discrete(limits = rev(levels(agg_leaves$month)))
all_leaves = all_leaves + labs(title = "Member Leaves Across the Year")
all_leaves
communicators
agg_comm.2019
agg_comm.2020
agg_comm.2021
agg_comms
interval_start_timestamp | year | month | day | visitors | pct_communicated | total_communicated | year_type |
---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> | <fct> |
2019-03-29T00:00:00Z | 2019 | March | Friday | 206 | 25.72816 | 53 | Normal |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 184 | 20.65217 | 38 | Normal |
2019-03-31T00:00:00Z | 2019 | March | Sunday | 185 | 24.32432 | 45 | Normal |
2019-04-01T00:00:00Z | 2019 | April | Monday | 328 | 22.86585 | 75 | Normal |
2019-04-02T00:00:00Z | 2019 | April | Tuesday | 143 | 33.56643 | 48 | Normal |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 271 | 16.60517 | 45 | Normal |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 381 | 13.38583 | 51 | Normal |
2019-04-05T00:00:00Z | 2019 | April | Friday | 190 | 24.73684 | 47 | Normal |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 163 | 26.99387 | 44 | Normal |
2019-04-07T00:00:00Z | 2019 | April | Sunday | 159 | 31.44654 | 50 | Normal |
2019-04-08T00:00:00Z | 2019 | April | Monday | 163 | 25.76687 | 42 | Normal |
2019-04-09T00:00:00Z | 2019 | April | Tuesday | 148 | 31.08108 | 46 | Normal |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 163 | 30.67485 | 50 | Normal |
2019-04-11T00:00:00Z | 2019 | April | Thursday | 139 | 38.12950 | 53 | Normal |
2019-04-12T00:00:00Z | 2019 | April | Friday | 155 | 29.67742 | 46 | Normal |
2019-04-13T00:00:00Z | 2019 | April | Saturday | 143 | 30.06993 | 43 | Normal |
2019-04-14T00:00:00Z | 2019 | April | Sunday | 140 | 28.57143 | 40 | Normal |
2019-04-15T00:00:00Z | 2019 | April | Monday | 170 | 29.41176 | 50 | Normal |
2019-04-16T00:00:00Z | 2019 | April | Tuesday | 150 | 40.66667 | 61 | Normal |
2019-04-17T00:00:00Z | 2019 | April | Wednesday | 153 | 34.64052 | 53 | Normal |
2019-04-18T00:00:00Z | 2019 | April | Thursday | 167 | 43.71257 | 73 | Normal |
2019-04-19T00:00:00Z | 2019 | April | Friday | 162 | 33.95062 | 55 | Normal |
2019-04-20T00:00:00Z | 2019 | April | Saturday | 337 | 15.13353 | 51 | Normal |
2019-04-21T00:00:00Z | 2019 | April | Sunday | 172 | 25.00000 | 43 | Normal |
2019-04-22T00:00:00Z | 2019 | April | Monday | 162 | 24.07407 | 39 | Normal |
2019-04-23T00:00:00Z | 2019 | April | Tuesday | 163 | 35.58282 | 58 | Normal |
2019-04-24T00:00:00Z | 2019 | April | Wednesday | 340 | 15.29412 | 52 | Normal |
2019-04-25T00:00:00Z | 2019 | April | Thursday | 196 | 26.53061 | 52 | Normal |
2019-04-26T00:00:00Z | 2019 | April | Friday | 371 | 16.98113 | 63 | Normal |
2019-04-27T00:00:00Z | 2019 | April | Saturday | 201 | 27.86070 | 56 | Normal |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00Z | 2021 | February | Thursday | 172 | 23.255814 | 40 | Covid |
2021-02-26T00:00:00Z | 2021 | February | Friday | 167 | 19.161677 | 32 | Covid |
2021-02-27T00:00:00Z | 2021 | February | Saturday | 208 | 20.673077 | 43 | Covid |
2021-02-28T00:00:00Z | 2021 | February | Sunday | 167 | 17.964072 | 30 | Covid |
2021-03-01T00:00:00Z | 2021 | March | Monday | 164 | 18.292683 | 30 | Covid |
2021-03-02T00:00:00Z | 2021 | March | Tuesday | 199 | 15.075377 | 30 | Covid |
2021-03-03T00:00:00Z | 2021 | March | Wednesday | 163 | 18.404908 | 30 | Covid |
2021-03-04T00:00:00Z | 2021 | March | Thursday | 163 | 20.858896 | 34 | Covid |
2021-03-05T00:00:00Z | 2021 | March | Friday | 179 | 17.318436 | 31 | Covid |
2021-03-06T00:00:00Z | 2021 | March | Saturday | 304 | 9.539474 | 29 | Covid |
2021-03-07T00:00:00Z | 2021 | March | Sunday | 162 | 15.432099 | 25 | Covid |
2021-03-08T00:00:00Z | 2021 | March | Monday | 234 | 13.675214 | 32 | Covid |
2021-03-09T00:00:00Z | 2021 | March | Tuesday | 160 | 23.125000 | 37 | Covid |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 156 | 20.512821 | 32 | Covid |
2021-03-11T00:00:00Z | 2021 | March | Thursday | 553 | 7.233273 | 40 | Covid |
2021-03-12T00:00:00Z | 2021 | March | Friday | 253 | 14.624506 | 37 | Covid |
2021-03-13T00:00:00Z | 2021 | March | Saturday | 237 | 14.345992 | 34 | Covid |
2021-03-14T00:00:00Z | 2021 | March | Sunday | 147 | 20.408163 | 30 | Covid |
2021-03-15T00:00:00Z | 2021 | March | Monday | 154 | 18.831169 | 29 | Covid |
2021-03-16T00:00:00Z | 2021 | March | Tuesday | 154 | 21.428571 | 33 | Covid |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 141 | 21.985816 | 31 | Covid |
2021-03-18T00:00:00Z | 2021 | March | Thursday | 153 | 20.261438 | 31 | Covid |
2021-03-19T00:00:00Z | 2021 | March | Friday | 268 | 19.402985 | 52 | Covid |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 658 | 6.382979 | 42 | Covid |
2021-03-21T00:00:00Z | 2021 | March | Sunday | 170 | 23.529412 | 40 | Covid |
2021-03-22T00:00:00Z | 2021 | March | Monday | 174 | 22.413793 | 39 | Covid |
2021-03-23T00:00:00Z | 2021 | March | Tuesday | 143 | 16.783217 | 24 | Covid |
2021-03-24T00:00:00Z | 2021 | March | Wednesday | 157 | 17.197452 | 27 | Covid |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 165 | 25.454545 | 42 | Covid |
2021-03-26T00:00:00Z | 2021 | March | Friday | 573 | 6.108202 | 35 | Covid |
Months | Total Communicated |
---|---|
<fct> | <dbl> |
March | 136 |
April | 1531 |
May | 1238 |
June | 1094 |
July | 1150 |
August | 1760 |
September | 2588 |
October | 2168 |
November | 1861 |
December | 1184 |
Months | Total Communicated |
---|---|
<fct> | <dbl> |
January | 1094 |
February | 1232 |
March | 1174 |
April | 1186 |
May | 1077 |
June | 1139 |
July | 1071 |
August | 1859 |
September | 2175 |
October | 1602 |
November | 1165 |
December | 864 |
Months | Total Communicated |
---|---|
<fct> | <dbl> |
January | 968 |
February | 948 |
March | 876 |
month | year | total_communicated |
---|---|---|
<fct> | <fct> | <dbl> |
March | 2019 | 136 |
April | 2019 | 1531 |
May | 2019 | 1238 |
June | 2019 | 1094 |
July | 2019 | 1150 |
August | 2019 | 1760 |
September | 2019 | 2588 |
October | 2019 | 2168 |
November | 2019 | 1861 |
December | 2019 | 1184 |
January | 2020 | 1094 |
February | 2020 | 1232 |
March | 2020 | 1174 |
April | 2020 | 1186 |
May | 2020 | 1077 |
June | 2020 | 1139 |
July | 2020 | 1071 |
August | 2020 | 1859 |
September | 2020 | 2175 |
October | 2020 | 1602 |
November | 2020 | 1165 |
December | 2020 | 864 |
January | 2021 | 968 |
February | 2021 | 948 |
March | 2021 | 876 |
all_comms = ggplot(data = agg_comms, mapping = aes(x = month, y = total_communicated, fill = year)) + xlab("Month") + ylab("Total Members Communicated") +
geom_col()+ geom_text(aes(label=total_communicated), position = position_stack(vjust= 0.5),
colour = "black", size = 5) + coord_flip() + scale_x_discrete(limits = rev(levels(agg_comms$month)))
all_comms = all_comms + labs(title = "All Communicating Members")
all_comms
This section contains the code for generating linear models for the other variables we were interested in. I followed my professor's notes for setting up the parameters. For fun I decided to experiment with the messages dataset, as it included an additional variable of messages_per_communicator
which gives a bit more granularity in comparing between individuals and aggregates for messages.
joins
interval_start_timestamp | year | month | day | new_members | pct_communicated | pct_opened_channels | year_type |
---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> | <fct> |
2019-03-29T00:00:00Z | 2019 | March | Friday | 2 | 50.00000 | 50.00000 | Normal |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 6 | 16.66667 | 33.33333 | Normal |
2019-03-31T00:00:00Z | 2019 | March | Sunday | 8 | 25.00000 | 37.50000 | Normal |
2019-04-01T00:00:00Z | 2019 | April | Monday | 9 | 44.44444 | 33.33333 | Normal |
2019-04-02T00:00:00Z | 2019 | April | Tuesday | 2 | 50.00000 | 100.00000 | Normal |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 0 | NA | NA | Normal |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 2 | 100.00000 | 100.00000 | Normal |
2019-04-05T00:00:00Z | 2019 | April | Friday | 3 | 33.33333 | 0.00000 | Normal |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 2 | 0.00000 | 0.00000 | Normal |
2019-04-07T00:00:00Z | 2019 | April | Sunday | 2 | 0.00000 | 0.00000 | Normal |
2019-04-08T00:00:00Z | 2019 | April | Monday | 9 | 33.33333 | 33.33333 | Normal |
2019-04-09T00:00:00Z | 2019 | April | Tuesday | 3 | 33.33333 | 33.33333 | Normal |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 1 | 100.00000 | 100.00000 | Normal |
2019-04-11T00:00:00Z | 2019 | April | Thursday | 1 | 0.00000 | 100.00000 | Normal |
2019-04-12T00:00:00Z | 2019 | April | Friday | 1 | 0.00000 | 100.00000 | Normal |
2019-04-13T00:00:00Z | 2019 | April | Saturday | 1 | 0.00000 | 100.00000 | Normal |
2019-04-14T00:00:00Z | 2019 | April | Sunday | 0 | NA | NA | Normal |
2019-04-15T00:00:00Z | 2019 | April | Monday | 0 | NA | NA | Normal |
2019-04-16T00:00:00Z | 2019 | April | Tuesday | 3 | 66.66667 | 0.00000 | Normal |
2019-04-17T00:00:00Z | 2019 | April | Wednesday | 5 | 0.00000 | 20.00000 | Normal |
2019-04-18T00:00:00Z | 2019 | April | Thursday | 3 | 100.00000 | 33.33333 | Normal |
2019-04-19T00:00:00Z | 2019 | April | Friday | 3 | 0.00000 | 33.33333 | Normal |
2019-04-20T00:00:00Z | 2019 | April | Saturday | 0 | NA | NA | Normal |
2019-04-21T00:00:00Z | 2019 | April | Sunday | 1 | 100.00000 | 100.00000 | Normal |
2019-04-22T00:00:00Z | 2019 | April | Monday | 0 | NA | NA | Normal |
2019-04-23T00:00:00Z | 2019 | April | Tuesday | 1 | 0.00000 | 0.00000 | Normal |
2019-04-24T00:00:00Z | 2019 | April | Wednesday | 3 | 33.33333 | 0.00000 | Normal |
2019-04-25T00:00:00Z | 2019 | April | Thursday | 3 | 66.66667 | 66.66667 | Normal |
2019-04-26T00:00:00Z | 2019 | April | Friday | 3 | 33.33333 | 33.33333 | Normal |
2019-04-27T00:00:00Z | 2019 | April | Saturday | 1 | 100.00000 | 0.00000 | Normal |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00Z | 2021 | February | Thursday | 1 | 0.00000 | 100.00000 | Covid |
2021-02-26T00:00:00Z | 2021 | February | Friday | 5 | 40.00000 | 100.00000 | Covid |
2021-02-27T00:00:00Z | 2021 | February | Saturday | 8 | 12.50000 | 100.00000 | Covid |
2021-02-28T00:00:00Z | 2021 | February | Sunday | 5 | 20.00000 | 100.00000 | Covid |
2021-03-01T00:00:00Z | 2021 | March | Monday | 2 | 0.00000 | 50.00000 | Covid |
2021-03-02T00:00:00Z | 2021 | March | Tuesday | 6 | 16.66667 | 16.66667 | Covid |
2021-03-03T00:00:00Z | 2021 | March | Wednesday | 5 | 0.00000 | 40.00000 | Covid |
2021-03-04T00:00:00Z | 2021 | March | Thursday | 8 | 0.00000 | 62.50000 | Covid |
2021-03-05T00:00:00Z | 2021 | March | Friday | 3 | 33.33333 | 33.33333 | Covid |
2021-03-06T00:00:00Z | 2021 | March | Saturday | 3 | 0.00000 | 66.66667 | Covid |
2021-03-07T00:00:00Z | 2021 | March | Sunday | 3 | 0.00000 | 33.33333 | Covid |
2021-03-08T00:00:00Z | 2021 | March | Monday | 7 | 14.28571 | 42.85714 | Covid |
2021-03-09T00:00:00Z | 2021 | March | Tuesday | 7 | 0.00000 | 57.14286 | Covid |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 5 | 0.00000 | 40.00000 | Covid |
2021-03-11T00:00:00Z | 2021 | March | Thursday | 1 | 0.00000 | 100.00000 | Covid |
2021-03-12T00:00:00Z | 2021 | March | Friday | 11 | 18.18182 | 45.45455 | Covid |
2021-03-13T00:00:00Z | 2021 | March | Saturday | 4 | 0.00000 | 50.00000 | Covid |
2021-03-14T00:00:00Z | 2021 | March | Sunday | 1 | 0.00000 | 0.00000 | Covid |
2021-03-15T00:00:00Z | 2021 | March | Monday | 1 | 0.00000 | 0.00000 | Covid |
2021-03-16T00:00:00Z | 2021 | March | Tuesday | 6 | 0.00000 | 83.33333 | Covid |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 7 | 0.00000 | 71.42857 | Covid |
2021-03-18T00:00:00Z | 2021 | March | Thursday | 1 | 0.00000 | 0.00000 | Covid |
2021-03-19T00:00:00Z | 2021 | March | Friday | 5 | 0.00000 | 80.00000 | Covid |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 2 | 0.00000 | 0.00000 | Covid |
2021-03-21T00:00:00Z | 2021 | March | Sunday | 6 | 33.33333 | 33.33333 | Covid |
2021-03-22T00:00:00Z | 2021 | March | Monday | 5 | 20.00000 | 60.00000 | Covid |
2021-03-23T00:00:00Z | 2021 | March | Tuesday | 1 | 0.00000 | 0.00000 | Covid |
2021-03-24T00:00:00Z | 2021 | March | Wednesday | 4 | 0.00000 | 50.00000 | Covid |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 1 | 0.00000 | 0.00000 | Covid |
2021-03-26T00:00:00Z | 2021 | March | Friday | 4 | NA | NA | Covid |
joins_lm = lm(new_members ~ month + year_type, data = joins)
print(summary(joins_lm))
Call: lm(formula = new_members ~ month + year_type, data = joins) Residuals: Min 1Q Median 3Q Max -8.759 -2.195 -0.612 0.808 85.469 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.98132 0.80555 2.460 0.01414 * monthFebruary 0.26401 0.96935 0.272 0.78543 monthMarch -0.01493 0.95690 -0.016 0.98756 monthApril 0.60450 0.98228 0.615 0.53848 monthMay -0.36969 0.97461 -0.379 0.70456 monthJune -0.46217 0.98228 -0.471 0.63814 monthJuly -0.30518 0.97461 -0.313 0.75428 monthAugust 6.54966 0.97461 6.720 3.70e-11 *** monthSeptember 4.28783 0.98228 4.365 1.46e-05 *** monthOctober 2.22708 0.97461 2.285 0.02260 * monthNovember 2.25450 0.98228 2.295 0.02201 * monthDecember -0.78905 0.97461 -0.810 0.41844 year_typeCovid 1.22836 0.44590 2.755 0.00602 ** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 5.283 on 716 degrees of freedom Multiple R-squared: 0.1475, Adjusted R-squared: 0.1332 F-statistic: 10.32 on 12 and 716 DF, p-value: < 2.2e-16
messages
interval_start_timestamp | year | month | day | messages | messages_per_communicator | year_type |
---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <fct> |
2019-03-29T00:00:00Z | 2019 | March | Friday | 334 | 6.301887 | Normal |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 236 | 6.210526 | Normal |
2019-03-31T00:00:00Z | 2019 | March | Sunday | 364 | 8.088889 | Normal |
2019-04-01T00:00:00Z | 2019 | April | Monday | 404 | 5.386667 | Normal |
2019-04-02T00:00:00Z | 2019 | April | Tuesday | 543 | 11.312500 | Normal |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 324 | 7.200000 | Normal |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 556 | 10.901961 | Normal |
2019-04-05T00:00:00Z | 2019 | April | Friday | 273 | 5.808511 | Normal |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 335 | 7.613636 | Normal |
2019-04-07T00:00:00Z | 2019 | April | Sunday | 1102 | 22.040000 | Normal |
2019-04-08T00:00:00Z | 2019 | April | Monday | 188 | 4.476190 | Normal |
2019-04-09T00:00:00Z | 2019 | April | Tuesday | 399 | 8.673913 | Normal |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 531 | 10.620000 | Normal |
2019-04-11T00:00:00Z | 2019 | April | Thursday | 689 | 13.000000 | Normal |
2019-04-12T00:00:00Z | 2019 | April | Friday | 418 | 9.086957 | Normal |
2019-04-13T00:00:00Z | 2019 | April | Saturday | 566 | 13.162791 | Normal |
2019-04-14T00:00:00Z | 2019 | April | Sunday | 481 | 12.025000 | Normal |
2019-04-15T00:00:00Z | 2019 | April | Monday | 659 | 13.180000 | Normal |
2019-04-16T00:00:00Z | 2019 | April | Tuesday | 779 | 12.770492 | Normal |
2019-04-17T00:00:00Z | 2019 | April | Wednesday | 596 | 11.245283 | Normal |
2019-04-18T00:00:00Z | 2019 | April | Thursday | 1143 | 15.657534 | Normal |
2019-04-19T00:00:00Z | 2019 | April | Friday | 898 | 16.327273 | Normal |
2019-04-20T00:00:00Z | 2019 | April | Saturday | 331 | 6.490196 | Normal |
2019-04-21T00:00:00Z | 2019 | April | Sunday | 473 | 11.000000 | Normal |
2019-04-22T00:00:00Z | 2019 | April | Monday | 283 | 7.256410 | Normal |
2019-04-23T00:00:00Z | 2019 | April | Tuesday | 1270 | 21.896552 | Normal |
2019-04-24T00:00:00Z | 2019 | April | Wednesday | 746 | 14.346154 | Normal |
2019-04-25T00:00:00Z | 2019 | April | Thursday | 287 | 5.519231 | Normal |
2019-04-26T00:00:00Z | 2019 | April | Friday | 728 | 11.555556 | Normal |
2019-04-27T00:00:00Z | 2019 | April | Saturday | 691 | 12.339286 | Normal |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00Z | 2021 | February | Thursday | 138 | 3.450000 | Covid |
2021-02-26T00:00:00Z | 2021 | February | Friday | 78 | 2.437500 | Covid |
2021-02-27T00:00:00Z | 2021 | February | Saturday | 93 | 2.162791 | Covid |
2021-02-28T00:00:00Z | 2021 | February | Sunday | 46 | 1.533333 | Covid |
2021-03-01T00:00:00Z | 2021 | March | Monday | 53 | 1.766667 | Covid |
2021-03-02T00:00:00Z | 2021 | March | Tuesday | 72 | 2.400000 | Covid |
2021-03-03T00:00:00Z | 2021 | March | Wednesday | 122 | 4.066667 | Covid |
2021-03-04T00:00:00Z | 2021 | March | Thursday | 168 | 4.941176 | Covid |
2021-03-05T00:00:00Z | 2021 | March | Friday | 74 | 2.387097 | Covid |
2021-03-06T00:00:00Z | 2021 | March | Saturday | 43 | 1.482759 | Covid |
2021-03-07T00:00:00Z | 2021 | March | Sunday | 43 | 1.720000 | Covid |
2021-03-08T00:00:00Z | 2021 | March | Monday | 106 | 3.312500 | Covid |
2021-03-09T00:00:00Z | 2021 | March | Tuesday | 114 | 3.081081 | Covid |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 83 | 2.593750 | Covid |
2021-03-11T00:00:00Z | 2021 | March | Thursday | 109 | 2.725000 | Covid |
2021-03-12T00:00:00Z | 2021 | March | Friday | 75 | 2.027027 | Covid |
2021-03-13T00:00:00Z | 2021 | March | Saturday | 158 | 4.647059 | Covid |
2021-03-14T00:00:00Z | 2021 | March | Sunday | 73 | 2.433333 | Covid |
2021-03-15T00:00:00Z | 2021 | March | Monday | 73 | 2.517241 | Covid |
2021-03-16T00:00:00Z | 2021 | March | Tuesday | 52 | 1.575758 | Covid |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 64 | 2.064516 | Covid |
2021-03-18T00:00:00Z | 2021 | March | Thursday | 65 | 2.096774 | Covid |
2021-03-19T00:00:00Z | 2021 | March | Friday | 182 | 3.500000 | Covid |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 121 | 2.880952 | Covid |
2021-03-21T00:00:00Z | 2021 | March | Sunday | 157 | 3.925000 | Covid |
2021-03-22T00:00:00Z | 2021 | March | Monday | 94 | 2.410256 | Covid |
2021-03-23T00:00:00Z | 2021 | March | Tuesday | 34 | 1.416667 | Covid |
2021-03-24T00:00:00Z | 2021 | March | Wednesday | 51 | 1.888889 | Covid |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 120 | 2.857143 | Covid |
2021-03-26T00:00:00Z | 2021 | March | Friday | 122 | 3.485714 | Covid |
messages_lm = lm(messages ~ month + year_type, data = messages)
print(summary(messages_lm))
Call: lm(formula = messages ~ month + year_type, data = messages) Residuals: Min 1Q Median 3Q Max -533.72 -131.98 -34.98 68.19 2435.80 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 370.7838 37.3808 9.919 < 2e-16 *** monthFebruary 0.7405 44.9820 0.016 0.98687 monthMarch 19.0476 44.4043 0.429 0.66808 monthApril 153.6371 45.5819 3.371 0.00079 *** monthMay 24.6162 45.2261 0.544 0.58641 monthJune -73.9795 45.5819 -1.623 0.10503 monthJuly -42.4322 45.2261 -0.938 0.34845 monthAugust 210.2452 45.2261 4.649 3.98e-06 *** monthSeptember 433.9371 45.5819 9.520 < 2e-16 *** monthOctober 261.9549 45.2261 5.792 1.04e-08 *** monthNovember 109.9371 45.5819 2.412 0.01612 * monthDecember -79.8354 45.2261 -1.765 0.07795 . year_typeCovid -193.5419 20.6915 -9.354 < 2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 245.1 on 716 degrees of freedom Multiple R-squared: 0.369, Adjusted R-squared: 0.3584 F-statistic: 34.89 on 12 and 716 DF, p-value: < 2.2e-16
messages
interval_start_timestamp | year | month | day | messages | messages_per_communicator | year_type |
---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <fct> |
2019-03-29T00:00:00Z | 2019 | March | Friday | 334 | 6.301887 | Normal |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 236 | 6.210526 | Normal |
2019-03-31T00:00:00Z | 2019 | March | Sunday | 364 | 8.088889 | Normal |
2019-04-01T00:00:00Z | 2019 | April | Monday | 404 | 5.386667 | Normal |
2019-04-02T00:00:00Z | 2019 | April | Tuesday | 543 | 11.312500 | Normal |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 324 | 7.200000 | Normal |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 556 | 10.901961 | Normal |
2019-04-05T00:00:00Z | 2019 | April | Friday | 273 | 5.808511 | Normal |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 335 | 7.613636 | Normal |
2019-04-07T00:00:00Z | 2019 | April | Sunday | 1102 | 22.040000 | Normal |
2019-04-08T00:00:00Z | 2019 | April | Monday | 188 | 4.476190 | Normal |
2019-04-09T00:00:00Z | 2019 | April | Tuesday | 399 | 8.673913 | Normal |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 531 | 10.620000 | Normal |
2019-04-11T00:00:00Z | 2019 | April | Thursday | 689 | 13.000000 | Normal |
2019-04-12T00:00:00Z | 2019 | April | Friday | 418 | 9.086957 | Normal |
2019-04-13T00:00:00Z | 2019 | April | Saturday | 566 | 13.162791 | Normal |
2019-04-14T00:00:00Z | 2019 | April | Sunday | 481 | 12.025000 | Normal |
2019-04-15T00:00:00Z | 2019 | April | Monday | 659 | 13.180000 | Normal |
2019-04-16T00:00:00Z | 2019 | April | Tuesday | 779 | 12.770492 | Normal |
2019-04-17T00:00:00Z | 2019 | April | Wednesday | 596 | 11.245283 | Normal |
2019-04-18T00:00:00Z | 2019 | April | Thursday | 1143 | 15.657534 | Normal |
2019-04-19T00:00:00Z | 2019 | April | Friday | 898 | 16.327273 | Normal |
2019-04-20T00:00:00Z | 2019 | April | Saturday | 331 | 6.490196 | Normal |
2019-04-21T00:00:00Z | 2019 | April | Sunday | 473 | 11.000000 | Normal |
2019-04-22T00:00:00Z | 2019 | April | Monday | 283 | 7.256410 | Normal |
2019-04-23T00:00:00Z | 2019 | April | Tuesday | 1270 | 21.896552 | Normal |
2019-04-24T00:00:00Z | 2019 | April | Wednesday | 746 | 14.346154 | Normal |
2019-04-25T00:00:00Z | 2019 | April | Thursday | 287 | 5.519231 | Normal |
2019-04-26T00:00:00Z | 2019 | April | Friday | 728 | 11.555556 | Normal |
2019-04-27T00:00:00Z | 2019 | April | Saturday | 691 | 12.339286 | Normal |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00Z | 2021 | February | Thursday | 138 | 3.450000 | Covid |
2021-02-26T00:00:00Z | 2021 | February | Friday | 78 | 2.437500 | Covid |
2021-02-27T00:00:00Z | 2021 | February | Saturday | 93 | 2.162791 | Covid |
2021-02-28T00:00:00Z | 2021 | February | Sunday | 46 | 1.533333 | Covid |
2021-03-01T00:00:00Z | 2021 | March | Monday | 53 | 1.766667 | Covid |
2021-03-02T00:00:00Z | 2021 | March | Tuesday | 72 | 2.400000 | Covid |
2021-03-03T00:00:00Z | 2021 | March | Wednesday | 122 | 4.066667 | Covid |
2021-03-04T00:00:00Z | 2021 | March | Thursday | 168 | 4.941176 | Covid |
2021-03-05T00:00:00Z | 2021 | March | Friday | 74 | 2.387097 | Covid |
2021-03-06T00:00:00Z | 2021 | March | Saturday | 43 | 1.482759 | Covid |
2021-03-07T00:00:00Z | 2021 | March | Sunday | 43 | 1.720000 | Covid |
2021-03-08T00:00:00Z | 2021 | March | Monday | 106 | 3.312500 | Covid |
2021-03-09T00:00:00Z | 2021 | March | Tuesday | 114 | 3.081081 | Covid |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 83 | 2.593750 | Covid |
2021-03-11T00:00:00Z | 2021 | March | Thursday | 109 | 2.725000 | Covid |
2021-03-12T00:00:00Z | 2021 | March | Friday | 75 | 2.027027 | Covid |
2021-03-13T00:00:00Z | 2021 | March | Saturday | 158 | 4.647059 | Covid |
2021-03-14T00:00:00Z | 2021 | March | Sunday | 73 | 2.433333 | Covid |
2021-03-15T00:00:00Z | 2021 | March | Monday | 73 | 2.517241 | Covid |
2021-03-16T00:00:00Z | 2021 | March | Tuesday | 52 | 1.575758 | Covid |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 64 | 2.064516 | Covid |
2021-03-18T00:00:00Z | 2021 | March | Thursday | 65 | 2.096774 | Covid |
2021-03-19T00:00:00Z | 2021 | March | Friday | 182 | 3.500000 | Covid |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 121 | 2.880952 | Covid |
2021-03-21T00:00:00Z | 2021 | March | Sunday | 157 | 3.925000 | Covid |
2021-03-22T00:00:00Z | 2021 | March | Monday | 94 | 2.410256 | Covid |
2021-03-23T00:00:00Z | 2021 | March | Tuesday | 34 | 1.416667 | Covid |
2021-03-24T00:00:00Z | 2021 | March | Wednesday | 51 | 1.888889 | Covid |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 120 | 2.857143 | Covid |
2021-03-26T00:00:00Z | 2021 | March | Friday | 122 | 3.485714 | Covid |
messages_lm1 = lm(messages ~ month + year_type + messages_per_communicator, data = messages)
print(summary(messages_lm1))
Call: lm(formula = messages ~ month + year_type + messages_per_communicator, data = messages) Residuals: Min 1Q Median 3Q Max -794.57 -58.66 1.20 50.09 1112.68 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -80.219 22.265 -3.603 0.000337 *** monthFebruary 44.936 23.694 1.896 0.058298 . monthMarch 13.590 23.369 0.582 0.561041 monthApril 12.429 24.209 0.513 0.607821 monthMay -37.842 23.845 -1.587 0.112952 monthJune -2.577 24.045 -0.107 0.914678 monthJuly -33.459 23.802 -1.406 0.160241 monthAugust 128.790 23.875 5.394 9.36e-08 *** monthSeptember 311.849 24.154 12.911 < 2e-16 *** monthOctober 187.593 23.863 7.861 1.40e-14 *** monthNovember 101.338 23.989 4.224 2.71e-05 *** monthDecember -12.940 23.851 -0.543 0.587613 year_typeCovid -36.598 11.478 -3.189 0.001492 ** messages_per_communicator 55.895 1.292 43.247 < 2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 129 on 715 degrees of freedom Multiple R-squared: 0.8255, Adjusted R-squared: 0.8223 F-statistic: 260.2 on 13 and 715 DF, p-value: < 2.2e-16
messages
interval_start_timestamp | year | month | day | messages | messages_per_communicator | year_type |
---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <fct> |
2019-03-29T00:00:00Z | 2019 | March | Friday | 334 | 6.301887 | Normal |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 236 | 6.210526 | Normal |
2019-03-31T00:00:00Z | 2019 | March | Sunday | 364 | 8.088889 | Normal |
2019-04-01T00:00:00Z | 2019 | April | Monday | 404 | 5.386667 | Normal |
2019-04-02T00:00:00Z | 2019 | April | Tuesday | 543 | 11.312500 | Normal |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 324 | 7.200000 | Normal |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 556 | 10.901961 | Normal |
2019-04-05T00:00:00Z | 2019 | April | Friday | 273 | 5.808511 | Normal |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 335 | 7.613636 | Normal |
2019-04-07T00:00:00Z | 2019 | April | Sunday | 1102 | 22.040000 | Normal |
2019-04-08T00:00:00Z | 2019 | April | Monday | 188 | 4.476190 | Normal |
2019-04-09T00:00:00Z | 2019 | April | Tuesday | 399 | 8.673913 | Normal |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 531 | 10.620000 | Normal |
2019-04-11T00:00:00Z | 2019 | April | Thursday | 689 | 13.000000 | Normal |
2019-04-12T00:00:00Z | 2019 | April | Friday | 418 | 9.086957 | Normal |
2019-04-13T00:00:00Z | 2019 | April | Saturday | 566 | 13.162791 | Normal |
2019-04-14T00:00:00Z | 2019 | April | Sunday | 481 | 12.025000 | Normal |
2019-04-15T00:00:00Z | 2019 | April | Monday | 659 | 13.180000 | Normal |
2019-04-16T00:00:00Z | 2019 | April | Tuesday | 779 | 12.770492 | Normal |
2019-04-17T00:00:00Z | 2019 | April | Wednesday | 596 | 11.245283 | Normal |
2019-04-18T00:00:00Z | 2019 | April | Thursday | 1143 | 15.657534 | Normal |
2019-04-19T00:00:00Z | 2019 | April | Friday | 898 | 16.327273 | Normal |
2019-04-20T00:00:00Z | 2019 | April | Saturday | 331 | 6.490196 | Normal |
2019-04-21T00:00:00Z | 2019 | April | Sunday | 473 | 11.000000 | Normal |
2019-04-22T00:00:00Z | 2019 | April | Monday | 283 | 7.256410 | Normal |
2019-04-23T00:00:00Z | 2019 | April | Tuesday | 1270 | 21.896552 | Normal |
2019-04-24T00:00:00Z | 2019 | April | Wednesday | 746 | 14.346154 | Normal |
2019-04-25T00:00:00Z | 2019 | April | Thursday | 287 | 5.519231 | Normal |
2019-04-26T00:00:00Z | 2019 | April | Friday | 728 | 11.555556 | Normal |
2019-04-27T00:00:00Z | 2019 | April | Saturday | 691 | 12.339286 | Normal |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00Z | 2021 | February | Thursday | 138 | 3.450000 | Covid |
2021-02-26T00:00:00Z | 2021 | February | Friday | 78 | 2.437500 | Covid |
2021-02-27T00:00:00Z | 2021 | February | Saturday | 93 | 2.162791 | Covid |
2021-02-28T00:00:00Z | 2021 | February | Sunday | 46 | 1.533333 | Covid |
2021-03-01T00:00:00Z | 2021 | March | Monday | 53 | 1.766667 | Covid |
2021-03-02T00:00:00Z | 2021 | March | Tuesday | 72 | 2.400000 | Covid |
2021-03-03T00:00:00Z | 2021 | March | Wednesday | 122 | 4.066667 | Covid |
2021-03-04T00:00:00Z | 2021 | March | Thursday | 168 | 4.941176 | Covid |
2021-03-05T00:00:00Z | 2021 | March | Friday | 74 | 2.387097 | Covid |
2021-03-06T00:00:00Z | 2021 | March | Saturday | 43 | 1.482759 | Covid |
2021-03-07T00:00:00Z | 2021 | March | Sunday | 43 | 1.720000 | Covid |
2021-03-08T00:00:00Z | 2021 | March | Monday | 106 | 3.312500 | Covid |
2021-03-09T00:00:00Z | 2021 | March | Tuesday | 114 | 3.081081 | Covid |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 83 | 2.593750 | Covid |
2021-03-11T00:00:00Z | 2021 | March | Thursday | 109 | 2.725000 | Covid |
2021-03-12T00:00:00Z | 2021 | March | Friday | 75 | 2.027027 | Covid |
2021-03-13T00:00:00Z | 2021 | March | Saturday | 158 | 4.647059 | Covid |
2021-03-14T00:00:00Z | 2021 | March | Sunday | 73 | 2.433333 | Covid |
2021-03-15T00:00:00Z | 2021 | March | Monday | 73 | 2.517241 | Covid |
2021-03-16T00:00:00Z | 2021 | March | Tuesday | 52 | 1.575758 | Covid |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 64 | 2.064516 | Covid |
2021-03-18T00:00:00Z | 2021 | March | Thursday | 65 | 2.096774 | Covid |
2021-03-19T00:00:00Z | 2021 | March | Friday | 182 | 3.500000 | Covid |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 121 | 2.880952 | Covid |
2021-03-21T00:00:00Z | 2021 | March | Sunday | 157 | 3.925000 | Covid |
2021-03-22T00:00:00Z | 2021 | March | Monday | 94 | 2.410256 | Covid |
2021-03-23T00:00:00Z | 2021 | March | Tuesday | 34 | 1.416667 | Covid |
2021-03-24T00:00:00Z | 2021 | March | Wednesday | 51 | 1.888889 | Covid |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 120 | 2.857143 | Covid |
2021-03-26T00:00:00Z | 2021 | March | Friday | 122 | 3.485714 | Covid |
messages_lm2 = lm(messages_per_communicator ~ month + year_type, data = messages)
print(summary(messages_lm2))
Call: lm(formula = messages_per_communicator ~ month + year_type, data = messages) Residuals: Min 1Q Median 3Q Max -7.5431 -2.2972 -0.7784 1.2309 28.5756 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 8.06881 0.56882 14.185 < 2e-16 *** monthFebruary -0.79070 0.68449 -1.155 0.24841 monthMarch 0.09763 0.67570 0.144 0.88515 monthApril 2.52633 0.69362 3.642 0.00029 *** monthMay 1.11743 0.68821 1.624 0.10489 monthJune -1.27745 0.69362 -1.842 0.06593 . monthJuly -0.16054 0.68821 -0.233 0.81561 monthAugust 1.45731 0.68821 2.118 0.03456 * monthSeptember 2.18426 0.69362 3.149 0.00171 ** monthOctober 1.33040 0.68821 1.933 0.05361 . monthNovember 0.15385 0.69362 0.222 0.82452 monthDecember -1.19681 0.68821 -1.739 0.08246 . year_typeCovid -2.80785 0.31486 -8.918 < 2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 3.73 on 716 degrees of freedom Multiple R-squared: 0.2164, Adjusted R-squared: 0.2033 F-statistic: 16.48 on 12 and 716 DF, p-value: < 2.2e-16
voices
interval_start_timestamp | year | month | day | speaking_minutes | year_type |
---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <fct> |
2019-03-29T00:00:00Z | 2019 | March | Friday | 0 | Normal |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 0 | Normal |
2019-03-31T00:00:00Z | 2019 | March | Sunday | 0 | Normal |
2019-04-01T00:00:00Z | 2019 | April | Monday | 0 | Normal |
2019-04-02T00:00:00Z | 2019 | April | Tuesday | 0 | Normal |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 0 | Normal |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 0 | Normal |
2019-04-05T00:00:00Z | 2019 | April | Friday | 0 | Normal |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 0 | Normal |
2019-04-07T00:00:00Z | 2019 | April | Sunday | 0 | Normal |
2019-04-08T00:00:00Z | 2019 | April | Monday | 0 | Normal |
2019-04-09T00:00:00Z | 2019 | April | Tuesday | 0 | Normal |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 0 | Normal |
2019-04-11T00:00:00Z | 2019 | April | Thursday | 0 | Normal |
2019-04-12T00:00:00Z | 2019 | April | Friday | 0 | Normal |
2019-04-13T00:00:00Z | 2019 | April | Saturday | 0 | Normal |
2019-04-14T00:00:00Z | 2019 | April | Sunday | 0 | Normal |
2019-04-15T00:00:00Z | 2019 | April | Monday | 0 | Normal |
2019-04-16T00:00:00Z | 2019 | April | Tuesday | 0 | Normal |
2019-04-17T00:00:00Z | 2019 | April | Wednesday | 0 | Normal |
2019-04-18T00:00:00Z | 2019 | April | Thursday | 0 | Normal |
2019-04-19T00:00:00Z | 2019 | April | Friday | 0 | Normal |
2019-04-20T00:00:00Z | 2019 | April | Saturday | 0 | Normal |
2019-04-21T00:00:00Z | 2019 | April | Sunday | 0 | Normal |
2019-04-22T00:00:00Z | 2019 | April | Monday | 0 | Normal |
2019-04-23T00:00:00Z | 2019 | April | Tuesday | 0 | Normal |
2019-04-24T00:00:00Z | 2019 | April | Wednesday | 0 | Normal |
2019-04-25T00:00:00Z | 2019 | April | Thursday | 0 | Normal |
2019-04-26T00:00:00Z | 2019 | April | Friday | 0 | Normal |
2019-04-27T00:00:00Z | 2019 | April | Saturday | 0 | Normal |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00Z | 2021 | February | Thursday | 1495 | Covid |
2021-02-26T00:00:00Z | 2021 | February | Friday | 913 | Covid |
2021-02-27T00:00:00Z | 2021 | February | Saturday | 1118 | Covid |
2021-02-28T00:00:00Z | 2021 | February | Sunday | 1354 | Covid |
2021-03-01T00:00:00Z | 2021 | March | Monday | 1269 | Covid |
2021-03-02T00:00:00Z | 2021 | March | Tuesday | 1200 | Covid |
2021-03-03T00:00:00Z | 2021 | March | Wednesday | 2031 | Covid |
2021-03-04T00:00:00Z | 2021 | March | Thursday | 2293 | Covid |
2021-03-05T00:00:00Z | 2021 | March | Friday | 1124 | Covid |
2021-03-06T00:00:00Z | 2021 | March | Saturday | 1398 | Covid |
2021-03-07T00:00:00Z | 2021 | March | Sunday | 1460 | Covid |
2021-03-08T00:00:00Z | 2021 | March | Monday | 1834 | Covid |
2021-03-09T00:00:00Z | 2021 | March | Tuesday | 1523 | Covid |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 1119 | Covid |
2021-03-11T00:00:00Z | 2021 | March | Thursday | 1878 | Covid |
2021-03-12T00:00:00Z | 2021 | March | Friday | 1429 | Covid |
2021-03-13T00:00:00Z | 2021 | March | Saturday | 730 | Covid |
2021-03-14T00:00:00Z | 2021 | March | Sunday | 567 | Covid |
2021-03-15T00:00:00Z | 2021 | March | Monday | 1282 | Covid |
2021-03-16T00:00:00Z | 2021 | March | Tuesday | 1234 | Covid |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 1146 | Covid |
2021-03-18T00:00:00Z | 2021 | March | Thursday | 2464 | Covid |
2021-03-19T00:00:00Z | 2021 | March | Friday | 840 | Covid |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 428 | Covid |
2021-03-21T00:00:00Z | 2021 | March | Sunday | 880 | Covid |
2021-03-22T00:00:00Z | 2021 | March | Monday | 1598 | Covid |
2021-03-23T00:00:00Z | 2021 | March | Tuesday | 873 | Covid |
2021-03-24T00:00:00Z | 2021 | March | Wednesday | 771 | Covid |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 1742 | Covid |
2021-03-26T00:00:00Z | 2021 | March | Friday | 1038 | Covid |
voices_lm = lm(speaking_minutes ~ month + year_type, data = voices)
print(summary(voices_lm))
Call: lm(formula = speaking_minutes ~ month + year_type, data = voices) Residuals: Min 1Q Median 3Q Max -928.94 -287.96 -21.33 150.04 2268.59 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 238.42 68.62 3.475 0.000542 *** monthFebruary 53.85 82.57 0.652 0.514493 monthMarch 261.27 81.51 3.205 0.001409 ** monthApril -217.09 83.67 -2.595 0.009665 ** monthMay -269.06 83.02 -3.241 0.001246 ** monthJune -225.25 83.67 -2.692 0.007265 ** monthJuly -265.07 83.02 -3.193 0.001470 ** monthAugust 142.77 83.02 1.720 0.085914 . monthSeptember 474.25 83.67 5.668 2.09e-08 *** monthOctober 463.99 83.02 5.589 3.25e-08 *** monthNovember 256.21 83.67 3.062 0.002280 ** monthDecember -9.41 83.02 -0.113 0.909785 year_typeCovid 216.28 37.98 5.694 1.81e-08 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 450 on 716 degrees of freedom Multiple R-squared: 0.2877, Adjusted R-squared: 0.2757 F-statistic: 24.1 on 12 and 716 DF, p-value: < 2.2e-16
communicators
interval_start_timestamp | year | month | day | visitors | pct_communicated | total_communicated | year_type |
---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> | <fct> |
2019-03-29T00:00:00Z | 2019 | March | Friday | 206 | 25.72816 | 53 | Normal |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 184 | 20.65217 | 38 | Normal |
2019-03-31T00:00:00Z | 2019 | March | Sunday | 185 | 24.32432 | 45 | Normal |
2019-04-01T00:00:00Z | 2019 | April | Monday | 328 | 22.86585 | 75 | Normal |
2019-04-02T00:00:00Z | 2019 | April | Tuesday | 143 | 33.56643 | 48 | Normal |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 271 | 16.60517 | 45 | Normal |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 381 | 13.38583 | 51 | Normal |
2019-04-05T00:00:00Z | 2019 | April | Friday | 190 | 24.73684 | 47 | Normal |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 163 | 26.99387 | 44 | Normal |
2019-04-07T00:00:00Z | 2019 | April | Sunday | 159 | 31.44654 | 50 | Normal |
2019-04-08T00:00:00Z | 2019 | April | Monday | 163 | 25.76687 | 42 | Normal |
2019-04-09T00:00:00Z | 2019 | April | Tuesday | 148 | 31.08108 | 46 | Normal |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 163 | 30.67485 | 50 | Normal |
2019-04-11T00:00:00Z | 2019 | April | Thursday | 139 | 38.12950 | 53 | Normal |
2019-04-12T00:00:00Z | 2019 | April | Friday | 155 | 29.67742 | 46 | Normal |
2019-04-13T00:00:00Z | 2019 | April | Saturday | 143 | 30.06993 | 43 | Normal |
2019-04-14T00:00:00Z | 2019 | April | Sunday | 140 | 28.57143 | 40 | Normal |
2019-04-15T00:00:00Z | 2019 | April | Monday | 170 | 29.41176 | 50 | Normal |
2019-04-16T00:00:00Z | 2019 | April | Tuesday | 150 | 40.66667 | 61 | Normal |
2019-04-17T00:00:00Z | 2019 | April | Wednesday | 153 | 34.64052 | 53 | Normal |
2019-04-18T00:00:00Z | 2019 | April | Thursday | 167 | 43.71257 | 73 | Normal |
2019-04-19T00:00:00Z | 2019 | April | Friday | 162 | 33.95062 | 55 | Normal |
2019-04-20T00:00:00Z | 2019 | April | Saturday | 337 | 15.13353 | 51 | Normal |
2019-04-21T00:00:00Z | 2019 | April | Sunday | 172 | 25.00000 | 43 | Normal |
2019-04-22T00:00:00Z | 2019 | April | Monday | 162 | 24.07407 | 39 | Normal |
2019-04-23T00:00:00Z | 2019 | April | Tuesday | 163 | 35.58282 | 58 | Normal |
2019-04-24T00:00:00Z | 2019 | April | Wednesday | 340 | 15.29412 | 52 | Normal |
2019-04-25T00:00:00Z | 2019 | April | Thursday | 196 | 26.53061 | 52 | Normal |
2019-04-26T00:00:00Z | 2019 | April | Friday | 371 | 16.98113 | 63 | Normal |
2019-04-27T00:00:00Z | 2019 | April | Saturday | 201 | 27.86070 | 56 | Normal |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00Z | 2021 | February | Thursday | 172 | 23.255814 | 40 | Covid |
2021-02-26T00:00:00Z | 2021 | February | Friday | 167 | 19.161677 | 32 | Covid |
2021-02-27T00:00:00Z | 2021 | February | Saturday | 208 | 20.673077 | 43 | Covid |
2021-02-28T00:00:00Z | 2021 | February | Sunday | 167 | 17.964072 | 30 | Covid |
2021-03-01T00:00:00Z | 2021 | March | Monday | 164 | 18.292683 | 30 | Covid |
2021-03-02T00:00:00Z | 2021 | March | Tuesday | 199 | 15.075377 | 30 | Covid |
2021-03-03T00:00:00Z | 2021 | March | Wednesday | 163 | 18.404908 | 30 | Covid |
2021-03-04T00:00:00Z | 2021 | March | Thursday | 163 | 20.858896 | 34 | Covid |
2021-03-05T00:00:00Z | 2021 | March | Friday | 179 | 17.318436 | 31 | Covid |
2021-03-06T00:00:00Z | 2021 | March | Saturday | 304 | 9.539474 | 29 | Covid |
2021-03-07T00:00:00Z | 2021 | March | Sunday | 162 | 15.432099 | 25 | Covid |
2021-03-08T00:00:00Z | 2021 | March | Monday | 234 | 13.675214 | 32 | Covid |
2021-03-09T00:00:00Z | 2021 | March | Tuesday | 160 | 23.125000 | 37 | Covid |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 156 | 20.512821 | 32 | Covid |
2021-03-11T00:00:00Z | 2021 | March | Thursday | 553 | 7.233273 | 40 | Covid |
2021-03-12T00:00:00Z | 2021 | March | Friday | 253 | 14.624506 | 37 | Covid |
2021-03-13T00:00:00Z | 2021 | March | Saturday | 237 | 14.345992 | 34 | Covid |
2021-03-14T00:00:00Z | 2021 | March | Sunday | 147 | 20.408163 | 30 | Covid |
2021-03-15T00:00:00Z | 2021 | March | Monday | 154 | 18.831169 | 29 | Covid |
2021-03-16T00:00:00Z | 2021 | March | Tuesday | 154 | 21.428571 | 33 | Covid |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 141 | 21.985816 | 31 | Covid |
2021-03-18T00:00:00Z | 2021 | March | Thursday | 153 | 20.261438 | 31 | Covid |
2021-03-19T00:00:00Z | 2021 | March | Friday | 268 | 19.402985 | 52 | Covid |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 658 | 6.382979 | 42 | Covid |
2021-03-21T00:00:00Z | 2021 | March | Sunday | 170 | 23.529412 | 40 | Covid |
2021-03-22T00:00:00Z | 2021 | March | Monday | 174 | 22.413793 | 39 | Covid |
2021-03-23T00:00:00Z | 2021 | March | Tuesday | 143 | 16.783217 | 24 | Covid |
2021-03-24T00:00:00Z | 2021 | March | Wednesday | 157 | 17.197452 | 27 | Covid |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 165 | 25.454545 | 42 | Covid |
2021-03-26T00:00:00Z | 2021 | March | Friday | 573 | 6.108202 | 35 | Covid |
communicators_lm = lm(total_communicated ~ month + year_type, data = communicators)
print(summary(communicators_lm))
Call: lm(formula = total_communicated ~ month + year_type, data = communicators) Residuals: Min 1Q Median 3Q Max -39.805 -7.258 -1.258 5.628 77.195 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 42.1266 1.9689 21.396 < 2e-16 *** monthFebruary 4.9875 2.3693 2.105 0.03563 * monthMarch 2.7318 2.3388 1.168 0.24318 monthApril 7.5910 2.4009 3.162 0.00163 ** monthMay -0.3536 2.3821 -0.148 0.88203 monthJune -0.4757 2.4009 -0.198 0.84300 monthJuly -1.8698 2.3821 -0.785 0.43277 monthAugust 20.6786 2.3821 8.681 < 2e-16 *** monthSeptember 41.6910 2.4009 17.365 < 2e-16 *** monthOctober 23.1141 2.3821 9.703 < 2e-16 *** monthNovember 12.7410 2.4009 5.307 1.49e-07 *** monthDecember -4.6601 2.3821 -1.956 0.05082 . year_typeCovid -8.8685 1.0899 -8.137 1.79e-15 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 12.91 on 716 degrees of freedom Multiple R-squared: 0.552, Adjusted R-squared: 0.5445 F-statistic: 73.53 on 12 and 716 DF, p-value: < 2.2e-16
joins
interval_start_timestamp | year | month | day | new_members | pct_communicated | pct_opened_channels | year_type |
---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> | <fct> |
2019-03-29T00:00:00Z | 2019 | March | Friday | 2 | 50.00000 | 50.00000 | Normal |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 6 | 16.66667 | 33.33333 | Normal |
2019-03-31T00:00:00Z | 2019 | March | Sunday | 8 | 25.00000 | 37.50000 | Normal |
2019-04-01T00:00:00Z | 2019 | April | Monday | 9 | 44.44444 | 33.33333 | Normal |
2019-04-02T00:00:00Z | 2019 | April | Tuesday | 2 | 50.00000 | 100.00000 | Normal |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 0 | NA | NA | Normal |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 2 | 100.00000 | 100.00000 | Normal |
2019-04-05T00:00:00Z | 2019 | April | Friday | 3 | 33.33333 | 0.00000 | Normal |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 2 | 0.00000 | 0.00000 | Normal |
2019-04-07T00:00:00Z | 2019 | April | Sunday | 2 | 0.00000 | 0.00000 | Normal |
2019-04-08T00:00:00Z | 2019 | April | Monday | 9 | 33.33333 | 33.33333 | Normal |
2019-04-09T00:00:00Z | 2019 | April | Tuesday | 3 | 33.33333 | 33.33333 | Normal |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 1 | 100.00000 | 100.00000 | Normal |
2019-04-11T00:00:00Z | 2019 | April | Thursday | 1 | 0.00000 | 100.00000 | Normal |
2019-04-12T00:00:00Z | 2019 | April | Friday | 1 | 0.00000 | 100.00000 | Normal |
2019-04-13T00:00:00Z | 2019 | April | Saturday | 1 | 0.00000 | 100.00000 | Normal |
2019-04-14T00:00:00Z | 2019 | April | Sunday | 0 | NA | NA | Normal |
2019-04-15T00:00:00Z | 2019 | April | Monday | 0 | NA | NA | Normal |
2019-04-16T00:00:00Z | 2019 | April | Tuesday | 3 | 66.66667 | 0.00000 | Normal |
2019-04-17T00:00:00Z | 2019 | April | Wednesday | 5 | 0.00000 | 20.00000 | Normal |
2019-04-18T00:00:00Z | 2019 | April | Thursday | 3 | 100.00000 | 33.33333 | Normal |
2019-04-19T00:00:00Z | 2019 | April | Friday | 3 | 0.00000 | 33.33333 | Normal |
2019-04-20T00:00:00Z | 2019 | April | Saturday | 0 | NA | NA | Normal |
2019-04-21T00:00:00Z | 2019 | April | Sunday | 1 | 100.00000 | 100.00000 | Normal |
2019-04-22T00:00:00Z | 2019 | April | Monday | 0 | NA | NA | Normal |
2019-04-23T00:00:00Z | 2019 | April | Tuesday | 1 | 0.00000 | 0.00000 | Normal |
2019-04-24T00:00:00Z | 2019 | April | Wednesday | 3 | 33.33333 | 0.00000 | Normal |
2019-04-25T00:00:00Z | 2019 | April | Thursday | 3 | 66.66667 | 66.66667 | Normal |
2019-04-26T00:00:00Z | 2019 | April | Friday | 3 | 33.33333 | 33.33333 | Normal |
2019-04-27T00:00:00Z | 2019 | April | Saturday | 1 | 100.00000 | 0.00000 | Normal |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00Z | 2021 | February | Thursday | 1 | 0.00000 | 100.00000 | Covid |
2021-02-26T00:00:00Z | 2021 | February | Friday | 5 | 40.00000 | 100.00000 | Covid |
2021-02-27T00:00:00Z | 2021 | February | Saturday | 8 | 12.50000 | 100.00000 | Covid |
2021-02-28T00:00:00Z | 2021 | February | Sunday | 5 | 20.00000 | 100.00000 | Covid |
2021-03-01T00:00:00Z | 2021 | March | Monday | 2 | 0.00000 | 50.00000 | Covid |
2021-03-02T00:00:00Z | 2021 | March | Tuesday | 6 | 16.66667 | 16.66667 | Covid |
2021-03-03T00:00:00Z | 2021 | March | Wednesday | 5 | 0.00000 | 40.00000 | Covid |
2021-03-04T00:00:00Z | 2021 | March | Thursday | 8 | 0.00000 | 62.50000 | Covid |
2021-03-05T00:00:00Z | 2021 | March | Friday | 3 | 33.33333 | 33.33333 | Covid |
2021-03-06T00:00:00Z | 2021 | March | Saturday | 3 | 0.00000 | 66.66667 | Covid |
2021-03-07T00:00:00Z | 2021 | March | Sunday | 3 | 0.00000 | 33.33333 | Covid |
2021-03-08T00:00:00Z | 2021 | March | Monday | 7 | 14.28571 | 42.85714 | Covid |
2021-03-09T00:00:00Z | 2021 | March | Tuesday | 7 | 0.00000 | 57.14286 | Covid |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 5 | 0.00000 | 40.00000 | Covid |
2021-03-11T00:00:00Z | 2021 | March | Thursday | 1 | 0.00000 | 100.00000 | Covid |
2021-03-12T00:00:00Z | 2021 | March | Friday | 11 | 18.18182 | 45.45455 | Covid |
2021-03-13T00:00:00Z | 2021 | March | Saturday | 4 | 0.00000 | 50.00000 | Covid |
2021-03-14T00:00:00Z | 2021 | March | Sunday | 1 | 0.00000 | 0.00000 | Covid |
2021-03-15T00:00:00Z | 2021 | March | Monday | 1 | 0.00000 | 0.00000 | Covid |
2021-03-16T00:00:00Z | 2021 | March | Tuesday | 6 | 0.00000 | 83.33333 | Covid |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 7 | 0.00000 | 71.42857 | Covid |
2021-03-18T00:00:00Z | 2021 | March | Thursday | 1 | 0.00000 | 0.00000 | Covid |
2021-03-19T00:00:00Z | 2021 | March | Friday | 5 | 0.00000 | 80.00000 | Covid |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 2 | 0.00000 | 0.00000 | Covid |
2021-03-21T00:00:00Z | 2021 | March | Sunday | 6 | 33.33333 | 33.33333 | Covid |
2021-03-22T00:00:00Z | 2021 | March | Monday | 5 | 20.00000 | 60.00000 | Covid |
2021-03-23T00:00:00Z | 2021 | March | Tuesday | 1 | 0.00000 | 0.00000 | Covid |
2021-03-24T00:00:00Z | 2021 | March | Wednesday | 4 | 0.00000 | 50.00000 | Covid |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 1 | 0.00000 | 0.00000 | Covid |
2021-03-26T00:00:00Z | 2021 | March | Friday | 4 | NA | NA | Covid |
joins_lm = lm(new_members ~ month + year + year_type, data = joins)
print(summary(joins_lm))
Call: lm(formula = new_members ~ month + year + year_type, data = joins) Residuals: Min 1Q Median 3Q Max -8.751 -2.100 -0.594 0.789 85.461 Coefficients: (1 not defined because of singularities) Estimate Std. Error t value Pr(>|t|) (Intercept) 1.10756 0.89191 1.242 0.214722 monthFebruary 0.27963 0.96663 0.289 0.772452 monthMarch 0.10295 0.95562 0.108 0.914240 monthApril 1.48651 1.05476 1.409 0.159174 monthMay 0.51231 1.04767 0.489 0.624990 monthJune 0.41984 1.05476 0.398 0.690719 monthJuly 0.57683 1.04767 0.551 0.582092 monthAugust 7.43167 1.04767 7.094 3.15e-12 *** monthSeptember 5.16984 1.05476 4.901 1.18e-06 *** monthOctober 3.10909 1.04767 2.968 0.003101 ** monthNovember 3.13651 1.05476 2.974 0.003042 ** monthDecember 0.09296 1.04767 0.089 0.929323 year2020 1.21187 0.44469 2.725 0.006584 ** year2021 2.99237 0.90010 3.324 0.000931 *** year_typeCovid NA NA NA NA --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 5.268 on 715 degrees of freedom Multiple R-squared: 0.1535, Adjusted R-squared: 0.1381 F-statistic: 9.971 on 13 and 715 DF, p-value: < 2.2e-16
messages
interval_start_timestamp | year | month | day | messages | messages_per_communicator | year_type |
---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <fct> |
2019-03-29T00:00:00Z | 2019 | March | Friday | 334 | 6.301887 | Normal |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 236 | 6.210526 | Normal |
2019-03-31T00:00:00Z | 2019 | March | Sunday | 364 | 8.088889 | Normal |
2019-04-01T00:00:00Z | 2019 | April | Monday | 404 | 5.386667 | Normal |
2019-04-02T00:00:00Z | 2019 | April | Tuesday | 543 | 11.312500 | Normal |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 324 | 7.200000 | Normal |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 556 | 10.901961 | Normal |
2019-04-05T00:00:00Z | 2019 | April | Friday | 273 | 5.808511 | Normal |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 335 | 7.613636 | Normal |
2019-04-07T00:00:00Z | 2019 | April | Sunday | 1102 | 22.040000 | Normal |
2019-04-08T00:00:00Z | 2019 | April | Monday | 188 | 4.476190 | Normal |
2019-04-09T00:00:00Z | 2019 | April | Tuesday | 399 | 8.673913 | Normal |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 531 | 10.620000 | Normal |
2019-04-11T00:00:00Z | 2019 | April | Thursday | 689 | 13.000000 | Normal |
2019-04-12T00:00:00Z | 2019 | April | Friday | 418 | 9.086957 | Normal |
2019-04-13T00:00:00Z | 2019 | April | Saturday | 566 | 13.162791 | Normal |
2019-04-14T00:00:00Z | 2019 | April | Sunday | 481 | 12.025000 | Normal |
2019-04-15T00:00:00Z | 2019 | April | Monday | 659 | 13.180000 | Normal |
2019-04-16T00:00:00Z | 2019 | April | Tuesday | 779 | 12.770492 | Normal |
2019-04-17T00:00:00Z | 2019 | April | Wednesday | 596 | 11.245283 | Normal |
2019-04-18T00:00:00Z | 2019 | April | Thursday | 1143 | 15.657534 | Normal |
2019-04-19T00:00:00Z | 2019 | April | Friday | 898 | 16.327273 | Normal |
2019-04-20T00:00:00Z | 2019 | April | Saturday | 331 | 6.490196 | Normal |
2019-04-21T00:00:00Z | 2019 | April | Sunday | 473 | 11.000000 | Normal |
2019-04-22T00:00:00Z | 2019 | April | Monday | 283 | 7.256410 | Normal |
2019-04-23T00:00:00Z | 2019 | April | Tuesday | 1270 | 21.896552 | Normal |
2019-04-24T00:00:00Z | 2019 | April | Wednesday | 746 | 14.346154 | Normal |
2019-04-25T00:00:00Z | 2019 | April | Thursday | 287 | 5.519231 | Normal |
2019-04-26T00:00:00Z | 2019 | April | Friday | 728 | 11.555556 | Normal |
2019-04-27T00:00:00Z | 2019 | April | Saturday | 691 | 12.339286 | Normal |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00Z | 2021 | February | Thursday | 138 | 3.450000 | Covid |
2021-02-26T00:00:00Z | 2021 | February | Friday | 78 | 2.437500 | Covid |
2021-02-27T00:00:00Z | 2021 | February | Saturday | 93 | 2.162791 | Covid |
2021-02-28T00:00:00Z | 2021 | February | Sunday | 46 | 1.533333 | Covid |
2021-03-01T00:00:00Z | 2021 | March | Monday | 53 | 1.766667 | Covid |
2021-03-02T00:00:00Z | 2021 | March | Tuesday | 72 | 2.400000 | Covid |
2021-03-03T00:00:00Z | 2021 | March | Wednesday | 122 | 4.066667 | Covid |
2021-03-04T00:00:00Z | 2021 | March | Thursday | 168 | 4.941176 | Covid |
2021-03-05T00:00:00Z | 2021 | March | Friday | 74 | 2.387097 | Covid |
2021-03-06T00:00:00Z | 2021 | March | Saturday | 43 | 1.482759 | Covid |
2021-03-07T00:00:00Z | 2021 | March | Sunday | 43 | 1.720000 | Covid |
2021-03-08T00:00:00Z | 2021 | March | Monday | 106 | 3.312500 | Covid |
2021-03-09T00:00:00Z | 2021 | March | Tuesday | 114 | 3.081081 | Covid |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 83 | 2.593750 | Covid |
2021-03-11T00:00:00Z | 2021 | March | Thursday | 109 | 2.725000 | Covid |
2021-03-12T00:00:00Z | 2021 | March | Friday | 75 | 2.027027 | Covid |
2021-03-13T00:00:00Z | 2021 | March | Saturday | 158 | 4.647059 | Covid |
2021-03-14T00:00:00Z | 2021 | March | Sunday | 73 | 2.433333 | Covid |
2021-03-15T00:00:00Z | 2021 | March | Monday | 73 | 2.517241 | Covid |
2021-03-16T00:00:00Z | 2021 | March | Tuesday | 52 | 1.575758 | Covid |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 64 | 2.064516 | Covid |
2021-03-18T00:00:00Z | 2021 | March | Thursday | 65 | 2.096774 | Covid |
2021-03-19T00:00:00Z | 2021 | March | Friday | 182 | 3.500000 | Covid |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 121 | 2.880952 | Covid |
2021-03-21T00:00:00Z | 2021 | March | Sunday | 157 | 3.925000 | Covid |
2021-03-22T00:00:00Z | 2021 | March | Monday | 94 | 2.410256 | Covid |
2021-03-23T00:00:00Z | 2021 | March | Tuesday | 34 | 1.416667 | Covid |
2021-03-24T00:00:00Z | 2021 | March | Wednesday | 51 | 1.888889 | Covid |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 120 | 2.857143 | Covid |
2021-03-26T00:00:00Z | 2021 | March | Friday | 122 | 3.485714 | Covid |
messages_lm = lm(messages ~ month + year + year_type, data = messages)
print(summary(messages_lm))
Call: lm(formula = messages ~ month + year + year_type, data = messages) Residuals: Min 1Q Median 3Q Max -533.05 -127.07 -32.48 66.92 2435.13 Coefficients: (1 not defined because of singularities) Estimate Std. Error t value Pr(>|t|) (Intercept) 441.7623 41.0836 10.753 < 2e-16 *** monthFebruary -0.5282 44.5253 -0.012 0.99054 monthMarch 9.4722 44.0183 0.215 0.82968 monthApril 81.9887 48.5851 1.688 0.09194 . monthMay -47.0322 48.2583 -0.975 0.33009 monthJune -145.6279 48.5851 -2.997 0.00282 ** monthJuly -114.0806 48.2583 -2.364 0.01835 * monthAugust 138.5968 48.2583 2.872 0.00420 ** monthSeptember 362.2887 48.5851 7.457 2.57e-13 *** monthOctober 190.3065 48.2583 3.943 8.82e-05 *** monthNovember 38.2887 48.5851 0.788 0.43091 monthDecember -151.4838 48.2583 -3.139 0.00176 ** year2020 -192.2022 20.4837 -9.383 < 2e-16 *** year2021 -336.8387 41.4610 -8.124 1.98e-15 *** year_typeCovid NA NA NA NA --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 242.6 on 715 degrees of freedom Multiple R-squared: 0.3827, Adjusted R-squared: 0.3714 F-statistic: 34.09 on 13 and 715 DF, p-value: < 2.2e-16
voices
interval_start_timestamp | year | month | day | speaking_minutes | year_type |
---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <fct> |
2019-03-29T00:00:00Z | 2019 | March | Friday | 0 | Normal |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 0 | Normal |
2019-03-31T00:00:00Z | 2019 | March | Sunday | 0 | Normal |
2019-04-01T00:00:00Z | 2019 | April | Monday | 0 | Normal |
2019-04-02T00:00:00Z | 2019 | April | Tuesday | 0 | Normal |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 0 | Normal |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 0 | Normal |
2019-04-05T00:00:00Z | 2019 | April | Friday | 0 | Normal |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 0 | Normal |
2019-04-07T00:00:00Z | 2019 | April | Sunday | 0 | Normal |
2019-04-08T00:00:00Z | 2019 | April | Monday | 0 | Normal |
2019-04-09T00:00:00Z | 2019 | April | Tuesday | 0 | Normal |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 0 | Normal |
2019-04-11T00:00:00Z | 2019 | April | Thursday | 0 | Normal |
2019-04-12T00:00:00Z | 2019 | April | Friday | 0 | Normal |
2019-04-13T00:00:00Z | 2019 | April | Saturday | 0 | Normal |
2019-04-14T00:00:00Z | 2019 | April | Sunday | 0 | Normal |
2019-04-15T00:00:00Z | 2019 | April | Monday | 0 | Normal |
2019-04-16T00:00:00Z | 2019 | April | Tuesday | 0 | Normal |
2019-04-17T00:00:00Z | 2019 | April | Wednesday | 0 | Normal |
2019-04-18T00:00:00Z | 2019 | April | Thursday | 0 | Normal |
2019-04-19T00:00:00Z | 2019 | April | Friday | 0 | Normal |
2019-04-20T00:00:00Z | 2019 | April | Saturday | 0 | Normal |
2019-04-21T00:00:00Z | 2019 | April | Sunday | 0 | Normal |
2019-04-22T00:00:00Z | 2019 | April | Monday | 0 | Normal |
2019-04-23T00:00:00Z | 2019 | April | Tuesday | 0 | Normal |
2019-04-24T00:00:00Z | 2019 | April | Wednesday | 0 | Normal |
2019-04-25T00:00:00Z | 2019 | April | Thursday | 0 | Normal |
2019-04-26T00:00:00Z | 2019 | April | Friday | 0 | Normal |
2019-04-27T00:00:00Z | 2019 | April | Saturday | 0 | Normal |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00Z | 2021 | February | Thursday | 1495 | Covid |
2021-02-26T00:00:00Z | 2021 | February | Friday | 913 | Covid |
2021-02-27T00:00:00Z | 2021 | February | Saturday | 1118 | Covid |
2021-02-28T00:00:00Z | 2021 | February | Sunday | 1354 | Covid |
2021-03-01T00:00:00Z | 2021 | March | Monday | 1269 | Covid |
2021-03-02T00:00:00Z | 2021 | March | Tuesday | 1200 | Covid |
2021-03-03T00:00:00Z | 2021 | March | Wednesday | 2031 | Covid |
2021-03-04T00:00:00Z | 2021 | March | Thursday | 2293 | Covid |
2021-03-05T00:00:00Z | 2021 | March | Friday | 1124 | Covid |
2021-03-06T00:00:00Z | 2021 | March | Saturday | 1398 | Covid |
2021-03-07T00:00:00Z | 2021 | March | Sunday | 1460 | Covid |
2021-03-08T00:00:00Z | 2021 | March | Monday | 1834 | Covid |
2021-03-09T00:00:00Z | 2021 | March | Tuesday | 1523 | Covid |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 1119 | Covid |
2021-03-11T00:00:00Z | 2021 | March | Thursday | 1878 | Covid |
2021-03-12T00:00:00Z | 2021 | March | Friday | 1429 | Covid |
2021-03-13T00:00:00Z | 2021 | March | Saturday | 730 | Covid |
2021-03-14T00:00:00Z | 2021 | March | Sunday | 567 | Covid |
2021-03-15T00:00:00Z | 2021 | March | Monday | 1282 | Covid |
2021-03-16T00:00:00Z | 2021 | March | Tuesday | 1234 | Covid |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 1146 | Covid |
2021-03-18T00:00:00Z | 2021 | March | Thursday | 2464 | Covid |
2021-03-19T00:00:00Z | 2021 | March | Friday | 840 | Covid |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 428 | Covid |
2021-03-21T00:00:00Z | 2021 | March | Sunday | 880 | Covid |
2021-03-22T00:00:00Z | 2021 | March | Monday | 1598 | Covid |
2021-03-23T00:00:00Z | 2021 | March | Tuesday | 873 | Covid |
2021-03-24T00:00:00Z | 2021 | March | Wednesday | 771 | Covid |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 1742 | Covid |
2021-03-26T00:00:00Z | 2021 | March | Friday | 1038 | Covid |
voices_lm = lm(speaking_minutes ~ month + year + year_type, data = voices)
summary(voices_lm)
Call: lm(formula = speaking_minutes ~ month + year + year_type, data = voices) Residuals: Min 1Q Median 3Q Max -925.30 -193.30 -24.96 135.36 2264.95 Coefficients: (1 not defined because of singularities) Estimate Std. Error t value Pr(>|t|) (Intercept) -146.89 68.66 -2.139 0.0327 * monthFebruary 60.74 74.41 0.816 0.4146 monthMarch 313.25 73.56 4.258 2.33e-05 *** monthApril 171.85 81.19 2.117 0.0346 * monthMay 119.88 80.65 1.487 0.1376 monthJune 163.68 81.19 2.016 0.0442 * monthJuly 123.87 80.65 1.536 0.1250 monthAugust 531.71 80.65 6.593 8.37e-11 *** monthSeptember 863.18 81.19 10.631 < 2e-16 *** monthOctober 852.93 80.65 10.576 < 2e-16 *** monthNovember 645.15 81.19 7.946 7.50e-15 *** monthDecember 379.53 80.65 4.706 3.03e-06 *** year2020 209.00 34.23 6.106 1.68e-09 *** year2021 994.15 69.29 14.348 < 2e-16 *** year_typeCovid NA NA NA NA --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 405.5 on 715 degrees of freedom Multiple R-squared: 0.4224, Adjusted R-squared: 0.4119 F-statistic: 40.22 on 13 and 715 DF, p-value: < 2.2e-16
communicators
interval_start_timestamp | year | month | day | visitors | pct_communicated | total_communicated | year_type |
---|---|---|---|---|---|---|---|
<chr> | <fct> | <fct> | <fct> | <int> | <dbl> | <dbl> | <fct> |
2019-03-29T00:00:00Z | 2019 | March | Friday | 206 | 25.72816 | 53 | Normal |
2019-03-30T00:00:00Z | 2019 | March | Saturday | 184 | 20.65217 | 38 | Normal |
2019-03-31T00:00:00Z | 2019 | March | Sunday | 185 | 24.32432 | 45 | Normal |
2019-04-01T00:00:00Z | 2019 | April | Monday | 328 | 22.86585 | 75 | Normal |
2019-04-02T00:00:00Z | 2019 | April | Tuesday | 143 | 33.56643 | 48 | Normal |
2019-04-03T00:00:00Z | 2019 | April | Wednesday | 271 | 16.60517 | 45 | Normal |
2019-04-04T00:00:00Z | 2019 | April | Thursday | 381 | 13.38583 | 51 | Normal |
2019-04-05T00:00:00Z | 2019 | April | Friday | 190 | 24.73684 | 47 | Normal |
2019-04-06T00:00:00Z | 2019 | April | Saturday | 163 | 26.99387 | 44 | Normal |
2019-04-07T00:00:00Z | 2019 | April | Sunday | 159 | 31.44654 | 50 | Normal |
2019-04-08T00:00:00Z | 2019 | April | Monday | 163 | 25.76687 | 42 | Normal |
2019-04-09T00:00:00Z | 2019 | April | Tuesday | 148 | 31.08108 | 46 | Normal |
2019-04-10T00:00:00Z | 2019 | April | Wednesday | 163 | 30.67485 | 50 | Normal |
2019-04-11T00:00:00Z | 2019 | April | Thursday | 139 | 38.12950 | 53 | Normal |
2019-04-12T00:00:00Z | 2019 | April | Friday | 155 | 29.67742 | 46 | Normal |
2019-04-13T00:00:00Z | 2019 | April | Saturday | 143 | 30.06993 | 43 | Normal |
2019-04-14T00:00:00Z | 2019 | April | Sunday | 140 | 28.57143 | 40 | Normal |
2019-04-15T00:00:00Z | 2019 | April | Monday | 170 | 29.41176 | 50 | Normal |
2019-04-16T00:00:00Z | 2019 | April | Tuesday | 150 | 40.66667 | 61 | Normal |
2019-04-17T00:00:00Z | 2019 | April | Wednesday | 153 | 34.64052 | 53 | Normal |
2019-04-18T00:00:00Z | 2019 | April | Thursday | 167 | 43.71257 | 73 | Normal |
2019-04-19T00:00:00Z | 2019 | April | Friday | 162 | 33.95062 | 55 | Normal |
2019-04-20T00:00:00Z | 2019 | April | Saturday | 337 | 15.13353 | 51 | Normal |
2019-04-21T00:00:00Z | 2019 | April | Sunday | 172 | 25.00000 | 43 | Normal |
2019-04-22T00:00:00Z | 2019 | April | Monday | 162 | 24.07407 | 39 | Normal |
2019-04-23T00:00:00Z | 2019 | April | Tuesday | 163 | 35.58282 | 58 | Normal |
2019-04-24T00:00:00Z | 2019 | April | Wednesday | 340 | 15.29412 | 52 | Normal |
2019-04-25T00:00:00Z | 2019 | April | Thursday | 196 | 26.53061 | 52 | Normal |
2019-04-26T00:00:00Z | 2019 | April | Friday | 371 | 16.98113 | 63 | Normal |
2019-04-27T00:00:00Z | 2019 | April | Saturday | 201 | 27.86070 | 56 | Normal |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2021-02-25T00:00:00Z | 2021 | February | Thursday | 172 | 23.255814 | 40 | Covid |
2021-02-26T00:00:00Z | 2021 | February | Friday | 167 | 19.161677 | 32 | Covid |
2021-02-27T00:00:00Z | 2021 | February | Saturday | 208 | 20.673077 | 43 | Covid |
2021-02-28T00:00:00Z | 2021 | February | Sunday | 167 | 17.964072 | 30 | Covid |
2021-03-01T00:00:00Z | 2021 | March | Monday | 164 | 18.292683 | 30 | Covid |
2021-03-02T00:00:00Z | 2021 | March | Tuesday | 199 | 15.075377 | 30 | Covid |
2021-03-03T00:00:00Z | 2021 | March | Wednesday | 163 | 18.404908 | 30 | Covid |
2021-03-04T00:00:00Z | 2021 | March | Thursday | 163 | 20.858896 | 34 | Covid |
2021-03-05T00:00:00Z | 2021 | March | Friday | 179 | 17.318436 | 31 | Covid |
2021-03-06T00:00:00Z | 2021 | March | Saturday | 304 | 9.539474 | 29 | Covid |
2021-03-07T00:00:00Z | 2021 | March | Sunday | 162 | 15.432099 | 25 | Covid |
2021-03-08T00:00:00Z | 2021 | March | Monday | 234 | 13.675214 | 32 | Covid |
2021-03-09T00:00:00Z | 2021 | March | Tuesday | 160 | 23.125000 | 37 | Covid |
2021-03-10T00:00:00Z | 2021 | March | Wednesday | 156 | 20.512821 | 32 | Covid |
2021-03-11T00:00:00Z | 2021 | March | Thursday | 553 | 7.233273 | 40 | Covid |
2021-03-12T00:00:00Z | 2021 | March | Friday | 253 | 14.624506 | 37 | Covid |
2021-03-13T00:00:00Z | 2021 | March | Saturday | 237 | 14.345992 | 34 | Covid |
2021-03-14T00:00:00Z | 2021 | March | Sunday | 147 | 20.408163 | 30 | Covid |
2021-03-15T00:00:00Z | 2021 | March | Monday | 154 | 18.831169 | 29 | Covid |
2021-03-16T00:00:00Z | 2021 | March | Tuesday | 154 | 21.428571 | 33 | Covid |
2021-03-17T00:00:00Z | 2021 | March | Wednesday | 141 | 21.985816 | 31 | Covid |
2021-03-18T00:00:00Z | 2021 | March | Thursday | 153 | 20.261438 | 31 | Covid |
2021-03-19T00:00:00Z | 2021 | March | Friday | 268 | 19.402985 | 52 | Covid |
2021-03-20T00:00:00Z | 2021 | March | Saturday | 658 | 6.382979 | 42 | Covid |
2021-03-21T00:00:00Z | 2021 | March | Sunday | 170 | 23.529412 | 40 | Covid |
2021-03-22T00:00:00Z | 2021 | March | Monday | 174 | 22.413793 | 39 | Covid |
2021-03-23T00:00:00Z | 2021 | March | Tuesday | 143 | 16.783217 | 24 | Covid |
2021-03-24T00:00:00Z | 2021 | March | Wednesday | 157 | 17.197452 | 27 | Covid |
2021-03-25T00:00:00Z | 2021 | March | Thursday | 165 | 25.454545 | 42 | Covid |
2021-03-26T00:00:00Z | 2021 | March | Friday | 573 | 6.108202 | 35 | Covid |
communicators_lm = lm(total_communicated ~ month + year + year_type, data = communicators)
summary(communicators_lm)
Call: lm(formula = total_communicated ~ month + year + year_type, data = communicators) Residuals: Min 1Q Median 3Q Max -39.780 -7.398 -1.624 6.070 77.220 Coefficients: (1 not defined because of singularities) Estimate Std. Error t value Pr(>|t|) (Intercept) 44.837 2.175 20.612 < 2e-16 *** monthFebruary 4.939 2.357 2.095 0.03652 * monthMarch 2.366 2.331 1.015 0.31033 monthApril 4.855 2.572 1.887 0.05953 . monthMay -3.090 2.555 -1.209 0.22696 monthJune -3.212 2.572 -1.249 0.21223 monthJuly -4.606 2.555 -1.803 0.07187 . monthAugust 17.942 2.555 7.022 5.09e-12 *** monthSeptember 38.955 2.572 15.143 < 2e-16 *** monthOctober 20.378 2.555 7.975 6.03e-15 *** monthNovember 10.005 2.572 3.889 0.00011 *** monthDecember -7.396 2.555 -2.895 0.00391 ** year2020 -8.817 1.085 -8.130 1.89e-15 *** year2021 -14.341 2.195 -6.533 1.23e-10 *** year_typeCovid NA NA NA NA --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 12.85 on 715 degrees of freedom Multiple R-squared: 0.5571, Adjusted R-squared: 0.5491 F-statistic: 69.19 on 13 and 715 DF, p-value: < 2.2e-16